Exact Mass: 1038.62557

Exact Mass Matches: 1038.62557

Found 42 metabolites which its exact mass value is equals to given mass value 1038.62557, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(DiMe(13,5)/LTE4)

(2-{[(2R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-3-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphonato]oxy}ethyl)trimethylazanium

C55H95N2O12PS (1038.6343)


PC(DiMe(13,5)/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(DiMe(13,5)/LTE4), in particular, consists of one chain of one 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/DiMe(13,5))

(2-{[(2R)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-2-{[13-(3,4-dimethyl-5-pentylfuran-2-yl)tridecanoyl]oxy}propyl phosphonato]oxy}ethyl)trimethylazanium

C55H95N2O12PS (1038.6343)


PC(LTE4/DiMe(13,5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/DiMe(13,5)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 14,17-epoxy-15-methyldocosa-14,16-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

11-O-Monomethylelaiophylin

11-O-Monomethylelaiophylin

C55H90O18 (1038.612684)


   
   

3-O-[beta-D-xylopyranosyl-(1?2)]-alpha-L-rhamnopyranosyl-(1?3)-beta-D-glucopyranosyl-21beta-tigloyl-28-acetyl-3beta,21beta,22alpha,28-tetrahydroxyolean-12-ene|aesculioside C15

3-O-[beta-D-xylopyranosyl-(1?2)]-alpha-L-rhamnopyranosyl-(1?3)-beta-D-glucopyranosyl-21beta-tigloyl-28-acetyl-3beta,21beta,22alpha,28-tetrahydroxyolean-12-ene|aesculioside C15

C54H86O19 (1038.5763006)


   

11,11?-O-dimethyl-14?-deethyl-14?-methylelaiophylin|11,11?-O-dimethylefomycin G.

11,11?-O-dimethyl-14?-deethyl-14?-methylelaiophylin|11,11?-O-dimethylefomycin G.

C55H90O18 (1038.612684)


   

Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu-Leu-Gly-Leu(NH2)

Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu-Leu-Gly-Leu(NH2)

C48H86N12O13 (1038.6436985999999)


   

PIM1 37:2

2-O-(alpha-D-Manp)-(1-(9Z,12Z-nonadecadienoyl)-2-octadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C52H95O18P (1038.62557)


   
   
   

[3-[[3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] docosanoate

[3-[[3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] docosanoate

C53H100O15P2 (1038.653711)


   

[3-[[3-[[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-docos-13-enoate

[3-[[3-[[3-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (E)-docos-13-enoate

C53H100O15P2 (1038.653711)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (12Z,15Z,18Z)-tetracosa-12,15,18-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (12Z,15Z,18Z)-tetracosa-12,15,18-trienoate

C53H100O15P2 (1038.653711)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] tetracosanoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] tetracosanoate

C53H100O15P2 (1038.653711)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-tetracos-15-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-tetracos-15-enoate

C53H100O15P2 (1038.653711)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (15Z,18Z)-tetracosa-15,18-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (15Z,18Z)-tetracosa-15,18-dienoate

C53H100O15P2 (1038.653711)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C59H90O15 (1038.627939)


   
   
   

Ac2PIM1 18:2(methyl)_18:0(methyl)

Ac2PIM1 18:2(methyl)_18:0(methyl)

C52H95O18P (1038.62557)


   

Adgga 20:5_16:4_18:5

Adgga 20:5_16:4_18:5

C63H90O12 (1038.643194)


   

Adgga 18:5_16:4_20:5

Adgga 18:5_16:4_20:5

C63H90O12 (1038.643194)


   

Adgga 16:4_16:4_22:6

Adgga 16:4_16:4_22:6

C63H90O12 (1038.643194)


   

Adgga 18:5_18:4_18:5

Adgga 18:5_18:4_18:5

C63H90O12 (1038.643194)


   

Adgga 22:6_16:4_16:4

Adgga 22:6_16:4_16:4

C63H90O12 (1038.643194)


   

Adgga 18:4_18:5_18:5

Adgga 18:4_18:5_18:5

C63H90O12 (1038.643194)


   

Adgga 16:4_18:5_20:5

Adgga 16:4_18:5_20:5

C63H90O12 (1038.643194)


   

[1-[hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] 10-methyloctadecanoate

[1-[hydroxy-[2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycyclohexyl]oxyphosphoryl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropan-2-yl] 10-methyloctadecanoate

C52H95O18P (1038.62557)


   

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C59H90O15 (1038.627939)


   

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C59H90O15 (1038.627939)


   

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C59H90O15 (1038.627939)


   

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C59H90O15 (1038.627939)