Exact Mass: 1037.6081608

Exact Mass Matches: 1037.6081608

Found 40 metabolites which its exact mass value is equals to given mass value 1037.6081608, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Microcystin RR

Microcystin RR

C49H75N13O12 (1037.565787)


A microcystin consisting of D-alanyl, L-arginyl, (3S)-3-methyl-D-beta-aspartyl, L-arginyl, (2S,3S,4E,6E,8S,9S)-3-amino-4,5,6,7-tetradehydro-9-methoxy-2,6,8-trimethyl-10-phenyldecanoyl, D-gamma-glutamyl, and 2,3-didehydro-N-methylalanyl residues joined into a 25-membered macrocycle. D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins CONFIDENCE standard compound; EAWAG_UCHEM_ID 3250 CONFIDENCE standard compound; UCHEM_ID 3250; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk); EQ cyanopeptide spectra replaced with more comprehensive acquisition. CONFIDENCE standard compound; UCHEM_ID 3250; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk)

   

CDP-DG(a-13:0/a-25:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-13:0/a-25:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-13:0/a-25:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-17:0/a-21:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(14-methylhexadecanoyl)oxy]-2-[(18-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-17:0/a-21:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-17:0/a-21:0), in particular, consists of one chain of anteisoheptadecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-17:0/i-21:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(14-methylhexadecanoyl)oxy]-2-[(19-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-17:0/i-21:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-17:0/i-21:0), in particular, consists of one chain of anteisoheptadecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-21:0/a-17:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(14-methylhexadecanoyl)oxy]-3-[(18-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-21:0/a-17:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-21:0/a-17:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-21:0/i-17:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(15-methylhexadecanoyl)oxy]-3-[(18-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-21:0/i-17:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-21:0/i-17:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-25:0/a-13:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-25:0/a-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-25:0/a-13:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(a-25:0/i-13:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(11-methyldodecanoyl)oxy]-3-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(a-25:0/i-13:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(a-25:0/i-13:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-13:0/a-25:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(22-methyltetracosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-13:0/a-25:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-13:0/a-25:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-14:0/i-24:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(22-methyltricosanoyl)oxy]-3-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-14:0/i-24:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-14:0/i-24:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position and one chain of isotetracosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-16:0/i-22:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(20-methylhenicosanoyl)oxy]-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-16:0/i-22:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-16:0/i-22:0), in particular, consists of one chain of isohexadecanoic acid at the C-1 position and one chain of isodocosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-17:0/a-21:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(15-methylhexadecanoyl)oxy]-2-[(18-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-17:0/a-21:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-17:0/a-21:0), in particular, consists of one chain of isoheptadecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-17:0/i-21:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(15-methylhexadecanoyl)oxy]-2-[(19-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-17:0/i-21:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-17:0/i-21:0), in particular, consists of one chain of isoheptadecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-18:0/i-20:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-18:0/i-20:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-18:0/i-20:0), in particular, consists of one chain of isooctadecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-19:0/i-19:0)

({[(2R)-2,3-bis[(17-methyloctadecanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)({[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy})phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-19:0/i-19:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-19:0/i-19:0), in particular, consists of one chain of isononadecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-20:0/i-18:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-20:0/i-18:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-20:0/i-18:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-21:0/a-17:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(14-methylhexadecanoyl)oxy]-3-[(19-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-21:0/a-17:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-21:0/a-17:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-21:0/i-17:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-2-[(15-methylhexadecanoyl)oxy]-3-[(19-methylicosanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-21:0/i-17:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-21:0/i-17:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-22:0/i-16:0)

{[(2R,3R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(20-methylhenicosanoyl)oxy]-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinate

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-22:0/i-16:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-22:0/i-16:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

CDP-DG(i-24:0/i-14:0)

{[(2R,3R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(2R)-3-[(22-methyltricosanoyl)oxy]-2-[(12-methyltridecanoyl)oxy]propoxy]phosphoryl}oxy)phosphinic acid

C50H93N3O15P2 (1037.6081608)


CDP-DG(i-24:0/i-14:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(i-24:0/i-14:0), in particular, consists of one chain of isotetracosanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).

   

microcystin RR

8,15-bis({3-[(diaminomethylidene)amino]propyl})-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-1,5,12,19-tetramethyl-2-methylidene-3,6,9,13,16,20,25-heptaoxo-1,4,7,10,14,17,21-heptaazacyclopentacosane-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

[D-Asp3,D-Glu(OCH3)6]microcystin-RR

[D-Asp3,D-Glu(OCH3)6]microcystin-RR

C49H75N13O12 (1037.565787)


   

(5R,8R,11R,12S,15S,18S,19S,22R)-8,15-bis[3-(diaminomethylideneamino)propyl]-18-[(1E,3E,5S,6S)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dienyl]-1,5,12,19-tetramethyl-2-methylidene-3,6,9,13,16,20,25-heptaoxo-1,4,7,10,14,17,21-heptazacyclopentacosane-11,22-dicarboxylic acid

(5R,8R,11R,12S,15S,18S,19S,22R)-8,15-bis[3-(diaminomethylideneamino)propyl]-18-[(1E,3E,5S,6S)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dienyl]-1,5,12,19-tetramethyl-2-methylidene-3,6,9,13,16,20,25-heptaoxo-1,4,7,10,14,17,21-heptazacyclopentacosane-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   
   

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-7,10,13,16,19-pentaenamide

(7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8,12-trien-2-yl]docosa-7,10,13,16,19-pentaenamide

C54H87NO18 (1037.5922842)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]hexacosa-5,8,11,14,17,20,23-heptaenamide

C54H87NO18 (1037.5922842)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctadeca-4,8,12-trien-2-yl]octadeca-3,6,9,12,15-pentaenamide

C54H87NO18 (1037.5922842)


   

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

(6Z,9Z,12Z,15Z,18Z,21Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]tetracosa-6,9,12,15,18,21-hexaenamide

C54H87NO18 (1037.5922842)


   

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

(4Z,7Z,10Z,13Z,16Z,19Z)-N-[(4E,8E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradeca-4,8-dien-2-yl]docosa-4,7,10,13,16,19-hexaenamide

C54H87NO18 (1037.5922842)


   

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[(4E,8E,12E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadeca-4,8,12-trien-2-yl]icosa-5,8,11,14,17-pentaenamide

C54H87NO18 (1037.5922842)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-N-[(E)-1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]octacosa-7,10,13,16,19,22,25-heptaenamide

C54H87NO18 (1037.5922842)


   

Hex3Cer(34:2)

Hex3Cer(d18:2_16:0(1+O))

C52H95NO19 (1037.649796)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

(5r,8s,11r,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-22-(methoxycarbonyl)-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-22-(methoxycarbonyl)-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid

C49H75N13O12 (1037.565787)


   

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-22-(methoxycarbonyl)-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-22-(methoxycarbonyl)-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11-carboxylic acid

C49H75N13O12 (1037.565787)


   

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3z,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3z,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

(8s,11r,12s,15s,19r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(8s,11r,12s,15s,19r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

(5r,8s,11r,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-8-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,15s,18s,19s,22r)-15-(4-carbamimidamidobutyl)-8-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)


   

(5r,8s,11r,12s,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

(5r,8s,11r,12s,15s,18s,19s,22r)-8,15-bis(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid

C49H75N13O12 (1037.565787)