Exact Mass: 1029.3448576

Exact Mass Matches: 1029.3448576

Found 45 metabolites which its exact mass value is equals to given mass value 1029.3448576, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Linoleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z,12Z)-octadeca-9,12-dienoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H66N7O17P3S (1029.3448576)


Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long-chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation. ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (PMID: 17184976, 16020546).

   

Kedarcidin chromophore

N-[(3S,9R,14S,15E,19S,21R,24S)-6-chloro-24-[(2S,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-14-[(2S,4S,5S,6S)-5-(dimethylamino)-4-hydroxy-6-methyloxan-2-yl]oxy-11-oxo-4,12,20-trioxa-7-azapentacyclo[13.6.2.25,8.13,21.019,21]hexacosa-1,5,7,15,25-pentaen-17,22-diyn-9-yl]-3-hydroxy-7,8-dimethoxy-6-propan-2-yloxynaphthalene-2-carboxamide

C53H60ClN3O16 (1029.366191)


   

6Z,9Z-octadecadienoyl-CoA

(2R)-4-({[({[(2R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(6Z,9Z)-octadeca-6,9-dienoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C39H66N7O17P3S (1029.3448576)


6Z,9Z-octadecadienoyl-CoA is classified as a member of the Long-chain fatty acyl CoAs. Long-chain fatty acyl CoAs are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. 6Z,9Z-octadecadienoyl-CoA is considered to be practically insoluble (in water) and acidic. 6Z,9Z-octadecadienoyl-CoA is a fatty ester lipid molecule

   

9Z,12Z-octadecadienoyl-CoA

(2R)-4-({[({[(2R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(9Z,12Z)-octadeca-9,12-dienoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C39H66N7O17P3S (1029.3448576)


9Z,12Z-octadecadienoyl-CoA, also known as Linoleoyl-coenzyme A, (e,e)-isomer or Linoleoyl-CoA, is classified as a member of the Long-chain fatty acyl CoAs. Long-chain fatty acyl CoAs are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. 9Z,12Z-octadecadienoyl-CoA is considered to be practically insoluble (in water) and acidic. 9Z,12Z-octadecadienoyl-CoA is a fatty ester lipid molecule COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(9Z,11Z)-Octadecadienoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(9Z,11Z)-octadeca-9,11-dienoylsulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C39H66N7O17P3S (1029.3448576)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (9Z,11Z)-octadecadienoic acid.

   

(10Z,12Z)-octadeca-10,12-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadeca-10,12-dienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H66N7O17P3S (1029.3448576)


(10z,12z)-octadeca-10,12-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (10Z_12Z)-octadeca-10_12-dienoic acid thioester of coenzyme A. (10z,12z)-octadeca-10,12-dienoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (10z,12z)-octadeca-10,12-dienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (10z,12z)-octadeca-10,12-dienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (10Z,12Z)-octadeca-10,12-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (10Z,12Z)-octadeca-10,12-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (10Z,12Z)-octadeca-10,12-dienoyl-CoA into (10Z_12Z)-octadeca-10_12-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (10Z_12Z)-octadeca-10_12-dienoylcarnitine is converted back to (10Z,12Z)-octadeca-10,12-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (10Z,12Z)-octadeca-10,12-dienoyl-CoA occurs in four steps. First, since (10Z,12Z)-octadeca-10,12-dienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (10Z,12Z)-octadeca-10,12-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor...

   

(9Z,11E)-octadeca-9,11-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadeca-9,11-dienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H66N7O17P3S (1029.3448576)


(9z,11e)-octadeca-9,11-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (9Z_11E)-octadeca-9_11-dienoic acid thioester of coenzyme A. (9z,11e)-octadeca-9,11-dienoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (9z,11e)-octadeca-9,11-dienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (9z,11e)-octadeca-9,11-dienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (9Z,11E)-octadeca-9,11-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (9Z,11E)-octadeca-9,11-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (9Z,11E)-octadeca-9,11-dienoyl-CoA into (9Z_11E)-octadeca-9_11-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (9Z_11E)-octadeca-9_11-dienoylcarnitine is converted back to (9Z,11E)-octadeca-9,11-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (9Z,11E)-octadeca-9,11-dienoyl-CoA occurs in four steps. First, since (9Z,11E)-octadeca-9,11-dienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (9Z,11E)-octadeca-9,11-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, En...

   

(6Z,9Z)-octadeca-6,9-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadeca-6,9-dienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H66N7O17P3S (1029.3448576)


(6z,9z)-octadeca-6,9-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z_9Z)-octadeca-6_9-dienoic acid thioester of coenzyme A. (6z,9z)-octadeca-6,9-dienoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z,9z)-octadeca-6,9-dienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z,9z)-octadeca-6,9-dienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z,9Z)-octadeca-6,9-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z,9Z)-octadeca-6,9-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z,9Z)-octadeca-6,9-dienoyl-CoA into (6Z_9Z)-octadeca-6_9-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z_9Z)-octadeca-6_9-dienoylcarnitine is converted back to (6Z,9Z)-octadeca-6,9-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z,9Z)-octadeca-6,9-dienoyl-CoA occurs in four steps. First, since (6Z,9Z)-octadeca-6,9-dienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z,9Z)-octadeca-6,9-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes th...

   

(2E,4E)-octadeca-2,4-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(octadeca-2,4-dienoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C39H66N7O17P3S (1029.3448576)


(2e,4e)-octadeca-2,4-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E_4E)-octadeca-2_4-dienoic acid thioester of coenzyme A. (2e,4e)-octadeca-2,4-dienoyl-coa is an acyl-CoA with 5 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e,4e)-octadeca-2,4-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e,4e)-octadeca-2,4-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E,4E)-octadeca-2,4-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E,4E)-octadeca-2,4-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E,4E)-octadeca-2,4-dienoyl-CoA into (2E_4E)-octadeca-2_4-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E_4E)-octadeca-2_4-dienoylcarnitine is converted back to (2E,4E)-octadeca-2,4-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E,4E)-octadeca-2,4-dienoyl-CoA occurs in four steps. First, since (2E,4E)-octadeca-2,4-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E,4E)-octadeca-2,4-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase cat...

   

9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-{2-[(2-{[9-(3-methyl-5-propylfuran-2-yl)nonanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}butanimidic acid

C38H62N7O18P3S (1029.3084741999999)


9-(3-methyl-5-propylfuran-2-yl)nonanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 9-(3-methyl-5-propylfuran-2-yl)nonanoic acid thioester of coenzyme A. 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA into 9-(3-methyl-5-propylfuran-2-yl)nonanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 9-(3-methyl-5-propylfuran-2-yl)nonanoylcarnitine is converted back to 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA occurs in four steps. First, since 9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 9-(3-methyl-5-propylfuran-2-yl)non...

   

5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-{2-[(2-{[5-(5-heptyl-3-methylfuran-2-yl)pentanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}-2-hydroxy-3,3-dimethylbutanimidic acid

C38H62N7O18P3S (1029.3084741999999)


5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-(5-heptyl-3-methylfuran-2-yl)pentanoic acid thioester of coenzyme A. 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA into 5-(5-heptyl-3-methylfuran-2-yl)pentanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-(5-heptyl-3-methylfuran-2-yl)pentanoylcarnitine is converted back to 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA occurs in four steps. First, since 5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-(5-heptyl-3-methylf...

   

7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-{2-[(2-{[7-(3-methyl-5-pentylfuran-2-yl)heptanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}butanimidic acid

C38H62N7O18P3S (1029.3084741999999)


7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 7-(3-methyl-5-pentylfuran-2-yl)heptanoic acid thioester of coenzyme A. 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-coa is an acyl-CoA with 16 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA into 7-(3-methyl-5-pentylfuran-2-yl)heptanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 7-(3-methyl-5-pentylfuran-2-yl)heptanoylcarnitine is converted back to 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA occurs in four steps. First, since 7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 7-(3-methyl-5-pentylf...

   

8-(5-pentylfuran-2-yl)octanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-{2-[(2-{[8-(5-pentylfuran-2-yl)octanoyl]sulphanyl}ethyl)-C-hydroxycarbonimidoyl]ethyl}butanimidic acid

C38H62N7O18P3S (1029.3084741999999)


8-(5-pentylfuran-2-yl)octanoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an 8-(5-pentylfuran-2-yl)octanoic acid thioester of coenzyme A. 8-(5-pentylfuran-2-yl)octanoyl-coa is an acyl-CoA with 17 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 8-(5-pentylfuran-2-yl)octanoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 8-(5-pentylfuran-2-yl)octanoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 8-(5-pentylfuran-2-yl)octanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 8-(5-pentylfuran-2-yl)octanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 8-(5-pentylfuran-2-yl)octanoyl-CoA into 8-(5-pentylfuran-2-yl)octanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 8-(5-pentylfuran-2-yl)octanoylcarnitine is converted back to 8-(5-pentylfuran-2-yl)octanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 8-(5-pentylfuran-2-yl)octanoyl-CoA occurs in four steps. First, since 8-(5-pentylfuran-2-yl)octanoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 8-(5-pentylfuran-2-yl)octanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, E...

   

CoA 18:2

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3448576)


   

Linoleoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (9Z,12Z)-octadeca-9,12-dienethioate

C39H66N7O17P3S (1029.3448576)


An octadecadienoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of linoleic acid. Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of Glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid {beta}-oxidation; ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates. (PMID: 17184976, 16020546) [HMDB]

   

stearoyl-CoA(4-)

stearoyl-CoA(4-)

C39H66N7O17P3S-4 (1029.3448576)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2E,11Z)-octadecadienoyl-CoA

(2E,11Z)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,11Z)-octadecadienoic acid.

   

(9Z,11E)-octadecadienoyl-CoA

(9Z,11E)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (9Z,11E)-octadecadienoic acid.

   
   
   

9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA

9-(3-methyl-5-propylfuran-2-yl)nonanoyl-CoA

C38H62N7O18P3S (1029.3084741999999)


   

5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA

5-(5-heptyl-3-methylfuran-2-yl)pentanoyl-CoA

C38H62N7O18P3S (1029.3084741999999)


   

7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA

7-(3-methyl-5-pentylfuran-2-yl)heptanoyl-CoA

C38H62N7O18P3S (1029.3084741999999)


   

(6Z,9Z)-octadeca-6,9-dienoyl-CoA

(6Z,9Z)-octadeca-6,9-dienoyl-CoA

C39H66N7O17P3S (1029.3448576)


   

(2E,4E)-octadeca-2,4-dienoyl-CoA

(2E,4E)-octadeca-2,4-dienoyl-CoA

C39H66N7O17P3S (1029.3448576)


   

(9Z,11E)-octadeca-9,11-dienoyl-CoA

(9Z,11E)-octadeca-9,11-dienoyl-CoA

C39H66N7O17P3S (1029.3448576)


   

(10Z,12Z)-octadeca-10,12-dienoyl-CoA

(10Z,12Z)-octadeca-10,12-dienoyl-CoA

C39H66N7O17P3S (1029.3448576)


   
   
   

(2E,9E)-octadecadienoyl-CoA

(2E,9E)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


A polyunsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,9E)-octadecadienoic acid.

   

(5Z,11E)-octadecadienoyl-CoA

(5Z,11E)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (5Z,11E)-octadecadienoic acid.

   

(6Z,11E)-octadecadienoyl-CoA

(6Z,11E)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (6Z,11E)-octadecadienoic acid.

   

(11E,13Z)-octadecadienoyl-CoA

(11E,13Z)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (11E,13Z)-octadecadienoic acid.

   

GlcA(b1-3)GalNAc(b1-4)GlcA(b1-3)Gal(b1-3)Gal(b1-4)Xyl

GlcA(b1-3)GalNAc(b1-4)GlcA(b1-3)Gal(b1-3)Gal(b1-4)Xyl

C37H59NO32 (1029.3020054)


   

(2R,3R,4R)-2-[(2S,3R,4R,5R,6R)-3-acetamido-2-[(2S,3S,4R,5R,6R)-2-carboxy-6-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6S)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(2S,4R)-1,2,4,5-tetrahydroxypentan-3-yl]oxyoxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid

(2R,3R,4R)-2-[(2S,3R,4R,5R,6R)-3-acetamido-2-[(2S,3S,4R,5R,6R)-2-carboxy-6-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6S)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(2S,4R)-1,2,4,5-tetrahydroxypentan-3-yl]oxyoxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid

C37H59NO32 (1029.3020054)


   

GlcA(b1-3)GalNAc(b1-4)GlcA(b1-3)Gal(b1-3)Gal(b1-4)b-Xyl

GlcA(b1-3)GalNAc(b1-4)GlcA(b1-3)Gal(b1-3)Gal(b1-4)b-Xyl

C37H59NO32 (1029.3020054)


   

(2R,3R,4R)-2-[(2S,3R,4R,5R,6R)-3-acetamido-2-[(2S,3S,4R,5R,6R)-2-carboxy-6-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6R)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(2R,3R,4S)-1,3,4,5-tetrahydroxypentan-2-yl]oxyoxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid

(2R,3R,4R)-2-[(2S,3R,4R,5R,6R)-3-acetamido-2-[(2S,3S,4R,5R,6R)-2-carboxy-6-[(2S,3R,4S,5S,6R)-2-[(2R,3S,4S,5R,6R)-3,5-dihydroxy-2-(hydroxymethyl)-6-[(2R,3R,4S)-1,3,4,5-tetrahydroxypentan-2-yl]oxyoxan-4-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid

C37H59NO32 (1029.3020054)


   

Linoleyl-CoA; (Acyl-CoA); [M+H]+

Linoleyl-CoA; (Acyl-CoA); [M+H]+

C39H66N7O17P3S (1029.3448576)


   

(6Z,9Z)-Octadecadienoyl-CoA; (Acyl-CoA); [M+H]+

(6Z,9Z)-Octadecadienoyl-CoA; (Acyl-CoA); [M+H]+

C39H66N7O17P3S (1029.3448576)


   

(10E,12Z)-octadeca-10,12-dienoic acid-CoA; (Acyl-CoA); [M+H]+

(10E,12Z)-octadeca-10,12-dienoic acid-CoA; (Acyl-CoA); [M+H]+

C39H66N7O17P3S (1029.3448576)


   

stearoyl-CoA(4-)

stearoyl-CoA(4-)

C39H66N7O17P3S (1029.3448576)


An acyl-CoA(4-) arising from deprotonation of phosphate and diphosphate functions of stearoyl-CoA.

   

(2E,9Z)-octadecadienoyl-CoA

(2E,9Z)-octadecadienoyl-CoA

C39H66N7O17P3S (1029.3448576)


A polyunsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of (2E,9Z)-octadecadienoic acid.

   

9-octadecynoyl-CoA

9-octadecynoyl-CoA

C39H66N7O17P3S (1029.3448576)


An alkynic fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 9-octadecynoic acid.

   

2-methyl-3-oxopalmitoyl-CoA(4-)

2-methyl-3-oxopalmitoyl-CoA(4-)

C38H62N7O18P3S (1029.3084741999999)


A 3-oxo-fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of 2-methyl-3-oxopalmitoyl-CoA.

   

3-oxoisoheptadecanoyl-CoA(4-)

3-oxoisoheptadecanoyl-CoA(4-)

C38H62N7O18P3S (1029.3084741999999)


A 3-oxo-fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate functions of 3-oxoisoheptadecanoyl-CoA.