Exact Mass: 1018.4984

Exact Mass Matches: 1018.4984

Found 113 metabolites which its exact mass value is equals to given mass value 1018.4984, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Chinenoside II

16-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-19-one

C49H78O22 (1018.4984)


Chinenoside II is found in onion-family vegetables. Chinenoside II is a constituent of Allium chinense (rakkyo). Constituent of Allium chinense (rakkyo). Chinenoside II is found in onion-family vegetables.

   

PIP2(16:0/20:4(5Z,8Z,11Z,14Z))

{[(4S,6S)-4-({[(2R)-3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(16:0/20:4(8Z,11Z,14Z,17Z))

{[(4S,6S)-4-({[(2R)-3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:1(11Z)/18:3(6Z,9Z,12Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the g-linolenic acid moiety is derived from animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the g-linolenic acid moiety is derived from animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:1(11Z)/18:3(9Z,12Z,15Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:1(9Z)/18:3(6Z,9Z,12Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the g-linolenic acid moiety is derived from animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the g-linolenic acid moiety is derived from animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:1(9Z)/18:3(9Z,12Z,15Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:2(9Z,12Z)/18:2(9Z,12Z))

{[(4S,6S)-4-({[(2R)-2,3-bis[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:2(9Z,12Z)/18:2(9Z,12Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the linoleic acid moiety is derived from seed oils. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:3(6Z,9Z,12Z)/18:1(11Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:3(6Z,9Z,12Z)/18:1(9Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:3(9Z,12Z,15Z)/18:1(11Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:3(9Z,12Z,15Z)/18:1(11Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:3(9Z,12Z,15Z)/18:1(11Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the vaccenic acid moiety is derived from butter fat and animal fat. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(18:3(9Z,12Z,15Z)/18:1(9Z))

{[(4S,6S)-2,3,5-trihydroxy-4-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(18:3(9Z,12Z,15Z)/18:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(18:3(9Z,12Z,15Z)/18:1(9Z)) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(20:4(5Z,8Z,11Z,14Z)/16:0)

{[(4S,6S)-4-({[(2R)-2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol. [HMDB] PIP2(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP2(20:4(8Z,11Z,14Z,17Z)/16:0)

{[(4S,6S)-4-({[(2R)-2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,3,5-trihydroxy-6-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C45H81O19P3 (1018.4585)


PIP2(20:4(8Z,11Z,14Z,17Z)/16:0) is a phosphatidylinositol bisphosphate. Phosphatidylinositol bisphosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a bisphosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are generated from phosphatidylinositols which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositols bisphosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PIP2(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. The most important phosphatidylinositol bisphosphate in both quantitative and biological terms is phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositols phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:0/PGF1alpha)

{[(1S,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(octadecanoyloxy)methyl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-21-yl]oxy}phosphonic acid

C47H88O19P2 (1018.5395)


PIP(18:0/PGF1alpha) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:0/PGF1alpha), in particular, consists of one chain of octadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGF1alpha/18:0)

{[(1S,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-(octadecanoyloxy)-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-22-yl]oxy}phosphonic acid

C47H88O19P2 (1018.5395)


PIP(PGF1alpha/18:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGF1alpha/18:0), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of octadecanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

{[(1R,3S)-3-({[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

{[(1R,3S)-3-({[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z)), in particular, consists of one chain of Resolvin D5 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

{[(1R,3S)-3-({[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

{[(1R,3S)-3-({[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z)), in particular, consists of one chain of Protectin DX at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(5Z,8Z,11Z)/PGJ2)

{[(1S,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-3,20,22,23,24-pentahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-{[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]methyl}-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-21-yl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:3(5Z,8Z,11Z)/PGJ2) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(5Z,8Z,11Z)/PGJ2), in particular, consists of one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGJ2/20:3(5Z,8Z,11Z))

{[(1S,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-3,21,23,24,25-pentahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-22-yl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(PGJ2/20:3(5Z,8Z,11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGJ2/20:3(5Z,8Z,11Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:3(8Z,11Z,14Z)/PGJ2)

{[(1S,6R,12Z,15S,19R,20R,21R,22R,23S,24R)-3,20,22,23,24-pentahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-{[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]methyl}-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosa-12,16-dien-21-yl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:3(8Z,11Z,14Z)/PGJ2) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:3(8Z,11Z,14Z)/PGJ2), in particular, consists of one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGJ2/20:3(8Z,11Z,14Z))

{[(1S,6R,13Z,16S,20R,21R,22R,23R,24S,25R)-3,21,23,24,25-pentahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosa-13,17-dien-22-yl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(PGJ2/20:3(8Z,11Z,14Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGJ2/20:3(8Z,11Z,14Z)), in particular, consists of one chain of Prostaglandin J2 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

{[(1R,3S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

{[(1R,3S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Leukotriene B4 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

{[(1R,3S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

{[(1R,3S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

{[(1R,3S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

{[(1R,3S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2,4,5,6-tetrahydroxycyclohexyl]oxy}phosphonic acid

C49H80O18P2 (1018.482)


PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

Tenacissoside E

Tenacissoside E

C53H78O19 (1018.5137)


   

Curassavioside E2

Curassavioside E2

C53H78O19 (1018.5137)


   

Operculinic acid A

(-)-Operculinic acid A

C46H82O24 (1018.5196)


   
   

12-O-cinnamoyl-20-O-acetyl-(20S)-pregn-6-ene-3beta,5alpha,8beta,12beta,14beta,17beta,20-heptanol 3-O-beta-D-thevetopyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside|mucronatoside H

12-O-cinnamoyl-20-O-acetyl-(20S)-pregn-6-ene-3beta,5alpha,8beta,12beta,14beta,17beta,20-heptanol 3-O-beta-D-thevetopyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside|mucronatoside H

C53H78O19 (1018.5137)


   
   

26-O-beta-D-glucopyranosylfurost-5-ene-1beta,3beta,22xi,26-tetrol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-xylopyranosyl-(1->3)-alpha-L-arabinopyranoside

26-O-beta-D-glucopyranosylfurost-5-ene-1beta,3beta,22xi,26-tetrol 1-O-alpha-L-rhamnopyranosyl-(1->2)-O-beta-D-xylopyranosyl-(1->3)-alpha-L-arabinopyranoside

C50H82O21 (1018.5348)


   

Convallasaponin-D

Convallasaponin-D

C50H82O21 (1018.5348)


   

26-O-beta-D-glucopyranosyl-furosta-5,25(27)-diene-1beta,3beta,22alpha,26-tetrol 1-O-{alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-xylopyranosyl-(1->3)]-alpha-L-arabinopyranoside}

26-O-beta-D-glucopyranosyl-furosta-5,25(27)-diene-1beta,3beta,22alpha,26-tetrol 1-O-{alpha-L-rhamnopyranosyl-(1->2)-O-[beta-D-xylopyranosyl-(1->3)]-alpha-L-arabinopyranoside}

C49H78O22 (1018.4984)


   

28-O-(beta-D-glucopyranosyl)-3-O-[beta-D-glucopyranosyl-(1->4)-beta-D-xylopyranosyl]-11alpha-methoxyphytolaccagenin|phytolaccasaponin N-2

28-O-(beta-D-glucopyranosyl)-3-O-[beta-D-glucopyranosyl-(1->4)-beta-D-xylopyranosyl]-11alpha-methoxyphytolaccagenin|phytolaccasaponin N-2

C49H78O22 (1018.4984)


   
   

(23S,24S,25S)-23,24-dihydroxyruscogenin 1-O-2)> 3)>-alpha-L-arabinopyranoside 24-O-beta-D-fucopyranoside|(23S,24S,25S)-23,24-dihydroxyruscogenin 1-O-[alpha-L-rhamnopyranosyl(1->2)] [beta-D-xylopyranosyl(1->3)]-alpha-L-arabinopyranoside 24-O-beta-D-fucopyranoside

(23S,24S,25S)-23,24-dihydroxyruscogenin 1-O-2)> 3)>-alpha-L-arabinopyranoside 24-O-beta-D-fucopyranoside|(23S,24S,25S)-23,24-dihydroxyruscogenin 1-O-[alpha-L-rhamnopyranosyl(1->2)] [beta-D-xylopyranosyl(1->3)]-alpha-L-arabinopyranoside 24-O-beta-D-fucopyranoside

C49H78O22 (1018.4984)


   

Asparanin B5|Asparanin B6

Asparanin B5|Asparanin B6

C50H82O21 (1018.5348)


   

Chinenoside II

16-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icos-6-en-19-one

C49H78O22 (1018.4984)


   

(11S)-jalapinolic acid 11-O-alpha-L-rhamnopyranosyl-(1-3)-O-[alpha-L-rhamnopyranosyl-(1-4)]-O-alpha-L-rhamnopyranosyl-(1-4)-O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-glucopyranoside|simonic acid A

(11S)-jalapinolic acid 11-O-alpha-L-rhamnopyranosyl-(1-3)-O-[alpha-L-rhamnopyranosyl-(1-4)]-O-alpha-L-rhamnopyranosyl-(1-4)-O-alpha-L-rhamnopyranosyl-(1-2)-beta-D-glucopyranoside|simonic acid A

C46H82O24 (1018.5196)


   

PIP2(36:4)

1-(9Z,12Z,15Z-Octadeatrienoyl)-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1-myo-inositol-3,4-bisphosphate)

C45H81O19P3 (1018.4585)


   

1-Eicsoate

1-(8Z,11Z,14Z,17Z-Eicosapentaenoyl)-2-hexadecanoyl-sn-glycero-3-phospho-(1-myo-inositol-3,4-bisphosphate)

C45H81O19P3 (1018.4585)


   

Tigogenin 3-O-alpha-L-rhamnopyranosyl(1->4)-beta-D-galactopyranosyl(1->3) -beta-D-xylopyranosyl(1->2)] -beta-D-glucopyranoside

(25R)-5alpha-spirostan-3beta-yl-alpha-L-rhamnopyranosyl(1->4)-beta-D-galactopyranosyl(1->3) -beta-D-xylopyranosyl(1->2)] -beta-D-glucopyranoside

C50H82O21 (1018.5348)


   

PIP(18:0/PGF1alpha)

PIP(18:0/PGF1alpha)

C47H88O19P2 (1018.5395)


   

PIP(PGF1alpha/18:0)

PIP(PGF1alpha/18:0)

C47H88O19P2 (1018.5395)


   

PIP(20:3(5Z,8Z,11Z)/PGJ2)

PIP(20:3(5Z,8Z,11Z)/PGJ2)

C49H80O18P2 (1018.482)


   

PIP(PGJ2/20:3(5Z,8Z,11Z))

PIP(PGJ2/20:3(5Z,8Z,11Z))

C49H80O18P2 (1018.482)


   

PIP(20:3(8Z,11Z,14Z)/PGJ2)

PIP(20:3(8Z,11Z,14Z)/PGJ2)

C49H80O18P2 (1018.482)


   

PIP(PGJ2/20:3(8Z,11Z,14Z))

PIP(PGJ2/20:3(8Z,11Z,14Z))

C49H80O18P2 (1018.482)


   

PIP(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PIP(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C49H80O18P2 (1018.482)


   

PIP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

PIP(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

C49H80O18P2 (1018.482)


   

PIP(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PIP(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C49H80O18P2 (1018.482)


   

PIP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

PIP(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C49H80O18P2 (1018.482)


   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C49H80O18P2 (1018.482)


   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PIP(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C49H80O18P2 (1018.482)


   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C49H80O18P2 (1018.482)


   

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

PIP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C49H80O18P2 (1018.482)


   

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

PIP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

C49H80O18P2 (1018.482)


   

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PIP(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C49H80O18P2 (1018.482)


   

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

PIP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

C49H80O18P2 (1018.482)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(7E,9E,11Z,13E,15E,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoate

C53H80O15P2 (1018.4972)


   

[3-[[3-[[3-[(7E,9E,11E,13E,15Z,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[[3-[[3-[(7E,9E,11E,13E,15Z,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C53H80O15P2 (1018.4972)


   
   

PIP2(18:2(9Z,12Z)/18:2(9Z,12Z))

PIP2(18:2(9Z,12Z)/18:2(9Z,12Z))

C45H81O19P3 (1018.4585)


   
   
   
   
   

6-acetyl-14-({5-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-7,11-dimethyl-9-[(2-methylbutanoyl)oxy]-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

6-acetyl-14-({5-[(3-hydroxy-4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-7,11-dimethyl-9-[(2-methylbutanoyl)oxy]-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

C53H78O19 (1018.5137)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C50H82O21 (1018.5348)


   

(1r,2s,4s,8s,9s,12s,13r,16s,18s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-19-one

(1r,2s,4s,8s,9s,12s,13r,16s,18s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-19-one

C49H78O22 (1018.4984)


   

11-{[3-({3,4-dihydroxy-5-[(3-hydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

11-{[3-({3,4-dihydroxy-5-[(3-hydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C46H82O24 (1018.5196)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,14r,16r)-16-hydroxy-6,7,9,13-tetramethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-{[(1s,2s,4s,6s,7s,8r,9s,12s,13r,14r,16r)-16-hydroxy-6,7,9,13-tetramethyl-6-[(3r)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C50H82O21 (1018.5348)


   

asparanin b5

NA

C50H82O21 (1018.5348)


{"Ingredient_id": "HBIN017109","Ingredient_name": "asparanin b5","Alias": "NA","Ingredient_formula": "C50H82O21","Ingredient_Smile": "CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CCC6C5(CCC(C6)OC7C(C(C(C(O7)COC8C(C(C(CO8)OC9C(C(C(C(O9)C)O)O)OC2C(C(C(C(O2)CO)O)O)O)O)O)O)O)O)C)C)C)OC1","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1873","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4,5-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadecanoic acid

C46H82O24 (1018.5196)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2s,2's,3s,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2s,2's,3s,4s,4's,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C49H78O22 (1018.4984)


   

(2r,3s,4r,5r,6s)-4,5-dihydroxy-2-methyl-6-{[(1s,3r,4s,5s,6r,8s,10r,11s,12s,13r,15r,17s,29r,30s,31s,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-33-{[(2e)-2-methylbut-2-enoyl]oxy}-27-oxo-17-pentyl-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-30-yl]oxy}oxan-3-yl (2e)-2-methylbut-2-enoate

(2r,3s,4r,5r,6s)-4,5-dihydroxy-2-methyl-6-{[(1s,3r,4s,5s,6r,8s,10r,11s,12s,13r,15r,17s,29r,30s,31s,33r)-4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-33-{[(2e)-2-methylbut-2-enoyl]oxy}-27-oxo-17-pentyl-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-30-yl]oxy}oxan-3-yl (2e)-2-methylbut-2-enoate

C50H82O21 (1018.5348)


   

11-[(3-{[3,4-dihydroxy-5-({3-hydroxy-6-methyl-4,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]hexadecanoic acid

11-[(3-{[3,4-dihydroxy-5-({3-hydroxy-6-methyl-4,5-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]hexadecanoic acid

C46H82O24 (1018.5196)


   

2-[(5-hydroxy-2-{[16-hydroxy-6,7,9,13-tetramethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(5-hydroxy-2-{[16-hydroxy-6,7,9,13-tetramethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C50H82O21 (1018.5348)


   

2-{[2-({6,16-dihydroxy-7,9,13-trimethyl-6-[3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl}oxy)-5-hydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[2-({6,16-dihydroxy-7,9,13-trimethyl-6-[3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl}oxy)-5-hydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C49H78O22 (1018.4984)


   

(11s)-11-{[(2r,3r,4s,5r,6r)-3-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5r,6r)-3-{[(2s,3r,4r,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C46H82O24 (1018.5196)


   

(1r,2s,4s,8s,9s,12s,13r,16s,18s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-19-one

(1r,2s,4s,8s,9s,12s,13r,16s,18s)-16-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-({[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7,9,13-trimethyl-6-[(3s)-3-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-6-en-19-one

C49H78O22 (1018.4984)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2s,2'r,3s,4s,4'r,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-5-hydroxy-2-[(1's,2s,2'r,3s,4s,4'r,5s,7's,8'r,9's,12's,13'r,14'r,16'r)-5,7',9',13'-tetramethyl-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy]-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C49H78O22 (1018.4984)


   

(1s,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

(1s,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-1,3a,3b-trihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6r)-4-hydroxy-5-{[(2s,4r,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C53H78O19 (1018.5137)


   

2-[(4-hydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

2-[(4-hydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

C50H82O21 (1018.5348)


   

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-9-{[(2r)-2-methylbutanoyl]oxy}-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4s,5r,6r)-3-hydroxy-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-9-{[(2r)-2-methylbutanoyl]oxy}-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl benzoate

C53H78O19 (1018.5137)


   

(2r,3s,4s,5r,6r)-2-({[(2s,3r,4r,5s)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxan-2-yl]oxy}methyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-({[(2s,3r,4r,5s)-5-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxyoxan-2-yl]oxy}methyl)-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy}oxane-3,4,5-triol

C50H82O21 (1018.5348)


   

4,5-dihydroxy-2-methyl-6-{[4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-33-[(2-methylbut-2-enoyl)oxy]-27-oxo-17-pentyl-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-30-yl]oxy}oxan-3-yl 2-methylbut-2-enoate

4,5-dihydroxy-2-methyl-6-{[4,5,11,12-tetrahydroxy-6-(hydroxymethyl)-13,31-dimethyl-33-[(2-methylbut-2-enoyl)oxy]-27-oxo-17-pentyl-2,7,9,14,16,28,32-heptaoxatetracyclo[27.3.1.0³,⁸.0¹⁰,¹⁵]tritriacontan-30-yl]oxy}oxan-3-yl 2-methylbut-2-enoate

C50H82O21 (1018.5348)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,14r,16r)-6,16-dihydroxy-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-2-{[(1s,2s,4s,6r,7s,8r,9s,12s,13r,14r,16r)-6,16-dihydroxy-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-14-yl]oxy}-5-hydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C49H78O22 (1018.4984)


   

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6r)-4-hydroxy-6-[(1'r,2r,2's,4's,5s,7's,8'r,9's,12's,13's,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]oxy]-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C50H82O21 (1018.5348)


   

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(5-hydroxy-2-{5,7',9',13'-tetramethyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-ene-3,16'-dioloxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C49H78O22 (1018.4984)


   

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10r,11s,12as,12br,13r,14bs)-10-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-13-methoxy-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10r,11s,12as,12br,13r,14bs)-10-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-13-methoxy-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

C49H78O22 (1018.4984)


   

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,9r,10r,11s,12ar,12br,14br)-10-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,9r,10r,11s,12ar,12br,14br)-10-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate

C49H78O22 (1018.4984)


   

1-acetyl-1,3a,3b-trihydroxy-7-[(4-hydroxy-5-{[4-hydroxy-5-({4-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl)oxy]-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

1-acetyl-1,3a,3b-trihydroxy-7-[(4-hydroxy-5-{[4-hydroxy-5-({4-hydroxy-5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl)oxy]-9a,11a-dimethyl-2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C53H78O19 (1018.5137)


   

(11s)-11-{[(2r,3r,4s,5r,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-4-hydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

(11s)-11-{[(2r,3r,4s,5r,6r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-4-hydroxy-6-methyl-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}hexadecanoic acid

C46H82O24 (1018.5196)