Exact Mass: 1008.6150058000001

Exact Mass Matches: 1008.6150058000001

Found 49 metabolites which its exact mass value is equals to given mass value 1008.6150058000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ganglioside GA2 (d18:1/12:0)

N-[(2S,3R,4E)-1-{[(2R,4R,5S,6R)-5-{[(2S,3R,4R,5R,6R)-5-{[(2S,3R,4R,5R,6R)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]dodecanimidate

C50H92N2O18 (1008.6344812)


Ganglioside GA2 (d18:1/12:0) is a glycosphingolipid (ceramide and oligosaccharide)or oligoglycosylceramide with one or more sialic acids (i.e. n-acetylneuraminic acid) linked on the sugar chain. It is a component the cell plasma membrane which modulates cell signal transduction events. Gangliosides have been found to be highly important in immunology. Ganglioside GA2 carries a net-negative charge at pH 7.0 and is acidic. Gangliosides can amount to 6\\% of the weight of lipids from brain, but they are found at low levels in all animal tissues. Gangliosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Gangliosides are very similar to globosides except that they also contain N-acetyl neuraminic acid (NANA) in varying amounts. The specific names for the gangliosides provide information about their structure. The letter G refers to ganglioside, and the subscripts M, D, T and Q indicate that the molecule contains mono-, di-, tri and quatra-sialic acid. The numbered subscripts 1, 2 and 3 refer to the carbohydrate sequence that is attached to the ceramide. In particular, 1 stands for GalGalNAcGalGlc-ceramide, 2 stands for GalNAcGalGlc-ceramide and 3 stands for GalGlc-ceramide. Deficiencies in lysosomal enzymes that degrade the carbohydrate portions of various gangliosides are responsible for a number of lysosomal storage diseases such as Tay-Sachs disease, Sandhoff disease, and GM1 gangliosidosis. The carbohydrate portion of the ganglioside GM1 is the site of attachment of cholera toxin, the protein secreted by Vibrio cholerae.

   

PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C51H94O15P2 (1008.6067634)


PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0)

[(2S)-3-({[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C51H94O15P2 (1008.6067634)


PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2S)-3-({[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C51H94O15P2 (1008.6067634)


PGP(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0)

[(2S)-3-({[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C51H94O15P2 (1008.6067634)


PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2S)-3-({[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C51H94O15P2 (1008.6067634)


PGP(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 22-methyltetracosanoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0)

[(2S)-3-({[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(22-methyltetracosanoyl)oxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphonic acid

C51H94O15P2 (1008.6067634)


PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 22-methyltetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(22-methyltricosanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C50H90O16P2 (1008.57038)


PGP(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(22-methyltricosanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C50H90O16P2 (1008.57038)


PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:3(10Z,13Z,16Z)/LTE4)

(2-{[(2R)-2-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulfanyl}propanoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C54H93N2O11PS (1008.6237358000001)


PC(22:3(10Z,13Z,16Z)/LTE4) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:3(10Z,13Z,16Z)/LTE4), in particular, consists of one chain of one 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(LTE4/22:3(10Z,13Z,16Z))

(2-{[(2R)-3-{[(2R)-2-amino-3-{[(4S,5R,6E,8E,10Z,13Z)-1-carboxy-4-hydroxynonadeca-6,8,10,13-tetraen-5-yl]sulphanyl}propanoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C54H93N2O11PS (1008.6237358000001)


PC(LTE4/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(LTE4/22:3(10Z,13Z,16Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Ganglioside GA2 (d18:1/12:0)

Ganglioside GA2 (d18:1/12:0)

C50H92N2O18 (1008.6344812)


   

PIM1 35:3

2-O-(alpha-D-Manp)-(1-(9Z,12Z-nonadecadienoyl)-2-(9Z-hexadecenoyl)-sn-glycero-3-phospho-1-myo-inositol)

C50H89O18P (1008.5786224000001)


   
   
   

PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PGP(a-25:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C51H94O15P2 (1008.6067634)


   

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0)

PGP(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-25:0)

C51H94O15P2 (1008.6067634)


   

PGP(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PGP(a-25:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C51H94O15P2 (1008.6067634)


   

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0)

PGP(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-25:0)

C51H94O15P2 (1008.6067634)


   

PGP(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PGP(a-25:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C51H94O15P2 (1008.6067634)


   

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0)

PGP(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-25:0)

C51H94O15P2 (1008.6067634)


   

PGP(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PGP(i-24:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C50H90O16P2 (1008.57038)


   

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0)

PGP(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-24:0)

C50H90O16P2 (1008.57038)


   

2-O-[(2E,4S)-2,4-dimethyldocos-2-enoyl]-3-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

2-O-[(2E,4S)-2,4-dimethyldocos-2-enoyl]-3-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

C52H96O16S (1008.6418735999999)


   

3-O-[(2E,4S)-2,4-dimethyldocos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

3-O-[(2E,4S)-2,4-dimethyldocos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

C52H96O16S (1008.6418735999999)


   

3-O-[(2E,4R)-2,4-dimethyldocos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

3-O-[(2E,4R)-2,4-dimethyldocos-2-enoyl]-2-O-palmitoyl-2-O-sulfo-alpha,alpha-trehalose

C52H96O16S (1008.6418735999999)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (12Z,15Z,18Z)-tetracosa-12,15,18-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (12Z,15Z,18Z)-tetracosa-12,15,18-trienoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] tetracosanoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(9Z,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] tetracosanoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-icosanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] docosanoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-docos-13-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-docos-13-enoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-tetracos-15-enoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (E)-tetracos-15-enoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(E)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (13Z,16Z)-docosa-13,16-dienoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (15Z,18Z)-tetracosa-15,18-dienoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (15Z,18Z)-tetracosa-15,18-dienoate

C51H94O15P2 (1008.6067634)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z)-tetracosa-9,12,15,18-tetraenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-(2-hydroxy-3-octadecanoyloxypropoxy)phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z)-tetracosa-9,12,15,18-tetraenoate

C51H94O15P2 (1008.6067634)


   
   
   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C57H84O15 (1008.5809914)


   
   
   
   
   
   
   
   

(7z)-n-[(3s,6s,9s,12s,15s,21s,22r)-6-[(1r)-2-amino-1-hydroxyethyl]-3-[(1s)-2-amino-1-hydroxyethyl]-15-(2-aminoethyl)-9-(3-carbamimidamidopropyl)-18-ethylidene-2,5,8,11,14,17,20,22-octahydroxy-12-(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclotricosa-1,4,7,10,13,16,19-heptaen-21-yl]tetradec-7-enimidic acid

(7z)-n-[(3s,6s,9s,12s,15s,21s,22r)-6-[(1r)-2-amino-1-hydroxyethyl]-3-[(1s)-2-amino-1-hydroxyethyl]-15-(2-aminoethyl)-9-(3-carbamimidamidopropyl)-18-ethylidene-2,5,8,11,14,17,20,22-octahydroxy-12-(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclotricosa-1,4,7,10,13,16,19-heptaen-21-yl]tetradec-7-enimidic acid

C46H84N14O11 (1008.6443674000001)