Exact Mass: 1001.532088
Exact Mass Matches: 1001.532088
Found 35 metabolites which its exact mass value is equals to given mass value 1001.532088
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
angiotensin A
C49H71N13O10 (1001.5446585999999)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
CDP-DG(16:0/20:4(5Z,8Z,11Z,14Z))
CDP-DG(16:0/20:4(5Z,8Z,11Z,14Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids. [HMDB] CDP-DG(16:0/20:4(5Z,8Z,11Z,14Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids.
CDP-DG(16:0/20:4(8Z,11Z,14Z,17Z))
CDP-DG(16:0/20:4(8Z,11Z,14Z,17Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids. [HMDB] CDP-DG(16:0/20:4(8Z,11Z,14Z,17Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids.
CDP-DG(18:2(9Z,12Z)/18:2(9Z,12Z))
CDP-DG(18:2(9Z,12Z)/18:2(9Z,12Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(20:4(5Z,8Z,11Z,14Z)/16:0)
CDP-DG(20:4(5Z,8Z,11Z,14Z)/16:0) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
CDP-DG(18:2(9Z,11Z)/18:2(9Z,11Z))
CDP-DG(18:2(9Z,11Z)/18:2(9Z,11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol (CDP-DG). CDP-diacylglycerol is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:2(9Z,11Z)/18:2(9Z,11Z)), in particular, consists of one chain of (9Z,11Z)-octadecadienoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts (perhaps only 0.05\\% or so of the total phospholipids).
Angiotensin A
C49H71N13O10 (1001.5446585999999)
(Sar1)-Angiotensin II
C49H71N13O10 (1001.5446585999999)
3-acetamido-22-benzyl-10-<1<(3-hydroxy-4-methyl-2-propionamidopentanoyl)oxy>-2-methylpropyl>-4-isopropyl-7-(1-methoxyethyl)-19-methylene-8,13,14,16,20-pentamethyl-1,5-dioxa-8,11,14,17,20-pentaazacyclodocosane-2,6,9,12,15,18,21-heptone|3-acetamido-22-benzyl-10-{1[(3-hydroxy-4-methyl-2-propionamidopentanoyl)oxy]-2-methylpropyl}-4-isopropyl-7-(1-methoxyethyl)-19-methylene-8,13,14,16,20-pentamethyl-1,5-dioxa-8,11,14,17,20-pentaazacyclodocosane-2,6,9,12,15,18,21-heptone
MCLY
CONFIDENCE standard compound; UCHEM_ID 3248; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; UCHEM_ID 3248; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk); EQ cyanopeptide spectra replaced with more comprehensive acquisition.
CDP-DG 36:4
Sar-Arg-Val-Tyr-Ile-His-Pro-Phe-OH
C49H71N13O10 (1001.5446585999999)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D004791 - Enzyme Inhibitors (Sar1)-Angiotensin II, an analogue of Angiotensin II, is a specific agonist of angiotensin AT1 receptor. (Sar1)-Angiotensin II binds to brain membrane-rich particles, with a Kd of 2.7 nM. (Sar1)-Angiotensin II can stimulate protein synthesis and cell growth in embryonic chick myocytes[1][2][3].
2-[[1-[2-[[2-[[2-[[2-[[2-(2-aminopropanoylamino)-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-methylpentanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoic acid
C49H71N13O10 (1001.5446585999999)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
[(1R)-1-[(3S,6S,9S,12S,18R,21S,22R)-21-acetamido-18-benzyl-3-[(1R)-1-methoxyethyl]-4,9,10,12,16-pentamethyl-15-methylidene-2,5,8,11,14,17,20-heptaoxo-22-propan-2-yl-1,19-dioxa-4,7,10,13,16-pentazacyclodocos-6-yl]-2-methylpropyl] (2S,3R)-3-hydroxy-4-methyl-2-(propanoylamino)pentanoate
[1-[21-Acetamido-18-benzyl-3-(1-methoxyethyl)-4,9,10,12,16-pentamethyl-15-methylidene-2,5,8,11,14,17,20-heptaoxo-22-propan-2-yl-1,19-dioxa-4,7,10,13,16-pentazacyclodocos-6-yl]-2-methylpropyl] 3-hydroxy-4-methyl-2-(propanoylamino)pentanoate
CDP-1-palmitoyl-2-arachidonoyl-sn-glycerol
A CDP-diacylglycerol in which the phosphatidyl acyl groups at positions 1 and 2 are specified as palmitoyl and arachidonoyl respectively.
CDP-1,2-dilinoleoyl-sn-glycerol
A CDP-diacylglycerol in which both phosphatidyl acyl groups are specified as linoleoyl.
PDC31
C45H71N13O13 (1001.5294035999999)
PDC31 (THG113.31; ILGHXDYK) is an allosteric and non-competitive inhibitor of FP Prostaglandin Receptor. PDC31 is the D-amino acid-based oligopeptide, is used for smooth muscle contractile agent. PDC31 decreases the strength and duration of uterine contractions in vivo, which can be used for research of preterm labor and primary dysmenorrhea (PD). PDC31 also enhances Ca2+-dependent large-conductance K+-channel in human myometrial cells[1][2].
n-[(2r,3r)-1-[(1r)-1-[(3r,6r,9r,12s,18r,21s,22s)-18-benzyl-8,14-dihydroxy-21-[(1-hydroxyethylidene)amino]-22-isopropyl-3-[(1s)-1-methoxyethyl]-4,9,10,12,16-pentamethyl-15-methylidene-2,5,11,17,20-pentaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosa-7,13-dien-6-yl]-2-methylpropoxy]-3-hydroxy-4-methyl-1-oxopentan-2-yl]propanimidic acid
(5r,8s,11r,15s,18s,19s,22r)-3,6,9,13,16,20-hexahydroxy-15-[(4-hydroxyphenyl)methyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-8-(2-methylbutyl)-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
n-[(2s,3r)-1-[(1r)-1-[(3s,6s,9s,12s,18r,21s,22r)-18-benzyl-8,14-dihydroxy-21-[(1-hydroxyethylidene)amino]-22-isopropyl-3-[(1r)-1-methoxyethyl]-4,9,10,12,16-pentamethyl-15-methylidene-2,5,11,17,20-pentaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosa-7,13-dien-6-yl]-2-methylpropoxy]-3-hydroxy-4-methyl-1-oxopentan-2-yl]propanimidic acid
(5r,8s,11r,12s,15s,18s,19s,22r)-3,6,9,13,16,20-hexahydroxy-8-[(4-hydroxyphenyl)methyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-15-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(5r,8s,11r,12s,15s,22r)-3,6,9,13,16,20-hexahydroxy-15-[(4-hydroxyphenyl)methyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,12,19-tetramethyl-2-methylidene-8-(2-methylpropyl)-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
n-[4-({1-[(1,3-dihydroxy-4-{[1-({8-hydroxy-3-[(4-hydroxyphenyl)methyl]-6-isopropyl-4-methyl-2,5-dioxo-1-oxa-4,7-diazacyclododeca-7,9-dien-11-yl}-c-hydroxycarbonimidoyl)-2-methylpropyl]-c-hydroxycarbonimidoyl}butan-2-yl)-c-hydroxycarbonimidoyl]-2-methylpropyl}-c-hydroxycarbonimidoyl)-1,3-dihydroxybutan-2-yl]dec-3-enimidic acid
n-[1-(1-{18-benzyl-8,14-dihydroxy-21-[(1-hydroxyethylidene)amino]-22-isopropyl-3-(1-methoxyethyl)-4,9,10,12,16-pentamethyl-15-methylidene-2,5,11,17,20-pentaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosa-7,13-dien-6-yl}-2-methylpropoxy)-3-hydroxy-4-methyl-1-oxopentan-2-yl]propanimidic acid
n-(5-{[4-(chlorooxy)phenyl]methyl}-6,13,16,21-tetrahydroxy-4,11-dimethyl-2,8,15-tris(2-methylpropyl)-3,9,22-trioxo-10-oxa-1,4,7,14,17-pentaazabicyclo[16.3.1]docosa-6,13,16-trien-12-yl)-2-{[hydroxy(1-methyl-2,5-dihydropyrrol-2-yl)methylidene]amino}pentanediimidic acid
C48H72ClN9O12 (1001.4988701999999)