Classification Term: 2610

Trihalomethanes (ontology term: CHEMONTID:0004160)

Organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms." []

found 12 associated metabolites at category metabolite taxonomy ontology rank level.

Ancestor: Halomethanes

Child Taxonomies: There is no child term of current ontology term.

Iodoform

Carbon triiodide

CHI3 (393.7212556)


D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Same as: D01910

   

Chloroform

Chloroformium pro narcosi

CHCl3 (117.91438360000001)


Chloroform is found in spearmint. Indirect food additive arising from adhesives and polymers Chloroform is a common solvent in the laboratory because it is relatively unreactive, miscible with most organic liquids, and conveniently volatile. Chloroform is used as a solvent in the pharmaceutical industry and for producing dyes and pesticides. Chloroform is an effective solvent for alkaloids in their base form and thus plant material is commonly extracted with chloroform for pharmaceutical processing. For example, it is commercially used to extract morphine from poppies and scopolamine from Datura plants. Chloroform containing deuterium (heavy hydrogen), CDCl3, is a common solvent used in NMR spectroscopy. It can be used to bond pieces of acrylic glass (also known under the trade names Perspex and Plexiglas). Chloroform is a solvent of phenol:chloroform:isoamyl alcohol 25:24:1 is used to dissolve non-nucleic acid biomolecules in DNA and RNA extractions. Chloroform is the organic compound with formula CHCl3. It does not undergo combustion in air, although it will burn when mixed with more flammable substances. It is a member of a group of compounds known as trihalomethanes. Chloroform has myriad uses as a reagent and a solvent. It is also considered an environmental hazard. Several million tons are produced annually. The output of this process is a mixture of the four chloromethanes: chloromethane, dichloromethane, chloroform (trichloromethane), and carbon tetrachloride, which are then separated by distillation. The total global flux of chloroform through the environment is approximately 660000 tonnes per year, and about 90\\% of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil. Abiotic process is also believed to contribute to natural chloroform productions in soils although the mechanism is still unclear. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons Indirect food additive arising from adhesives and polymers D012997 - Solvents ATC code: N01AB02

   

Dibromochloromethane

Dibromo-chloro-methane

CHBr2Cl (205.81334959999998)


Dibromochloromethane belongs to the family of Organochlorides. These are organic compounds containing a chlorine atom

   

Bromoform

Methyl tribromide

CHBr3 (249.76283259999997)


Bromoform, also known as Tribromomethane or Methyl tribromide, is classified as a member of the Trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Trace amounts of 1,2-dibromoethane occur naturally in the ocean, where it is formed probably by algae and kelp. Bromoform is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Exposure to bromoform may occur from the consumption of chlorinated drinking water. The acute (short-term) effects from inhalation or ingestion of high levels of bromoform in humans and animals consist of nervous system effects such as the slowing down of brain functions, and injury to the liver and kidney. Chronic (long-term) animal studies indicate effects on the liver, kidney, and central nervous system (CNS) from oral exposure to bromoform. Human data are considered inadequate in providing evidence of cancer by exposure to bromoform, while animal data indicate that long-term oral exposure can cause liver and intestinal tumors. Bromoform has been classified as a Group B2, probable human carcinogen. Most of the bromoform that enters the environment is formed as disinfection byproducts known as the trihalomethanes when chlorine is added to drinking water or swimming pools to kill bacteria. In the past, it was used as a solvent, sedative and flame retardant, but now it is mainly used as a laboratory reagent. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock. Bromoform is a pale yellow liquid at room temperature, with a high refractive index, very high density, and sweet odor is similar to that of chloroform. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens

   

Bromodichloromethane

Bromodichloromethane, 14C-labeled

CHBrCl2 (161.8638666)


Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens

   

1,2-Diacylglycerol-LD-PS-pool

1,2-Diacylglycerol-LD-PS-pool

CCl3NO2 (162.89946300000003)


Chloropicrin, also known as PS, is a chemical compound currently used as a broad-spectrum antimicrobial, fungicide, herbicide, insecticide, and nematicide. Chloropicrin can be absorbed systemically through inhalation, ingestion, and the skin. At high concentrations it is severely irritating to the lungs, eyes, and skin. In World War I German forces used concentrated chloropicrin against Allied forces as a tear gas. While not as lethal as other chemical weapons, it caused vomiting and forced Allied soldiers to remove their masks to vomit, exposing them to other, more toxic chemical gases used as weapons during the war. (Wikipedia D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents

   

Chlorodifluoromethane

Monochlorodifluoromethane

CHClF2 (85.973484)


   

Trichloro(hydroperoxy)methane

Trichloro(hydroperoxy)methane

CHCl3O2 (149.90421360000002)


   
   

Trifluoromethane

Methyl trifluoride

CHF3 (70.0030342)


   

Trichloro[(trichloromethyl)peroxy]methane

Trichloro[(trichloromethyl)peroxy]methane

C2Cl6O2 (265.802948)