Classification Term: 2065

Isoflavanones (ontology term: CHEMONTID:0001827)

Polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4." []

found 12 associated metabolites at category metabolite taxonomy ontology rank level.

Ancestor: Isoflavans

Child Taxonomies: 2-hydroxyisoflavanones, 3'-prenylated isoflavanones, 6-prenylated isoflavanones, 8-prenylated isoflavanones, 2'-prenylated isoflavanones

Dihydrodaidzein

(R)-23-Dihydro-7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H12O4 (256.0735552)


Dihydrodaidzein is one of the most prominent dietary phytoestrogens. Dietary phytoestrogens have been implicated in the prevention of chronic diseases (PMID:12270199). Dihydrodaidzein is a biomarker for the consumption of soy beans and other soy products. Dihydrodaidzein is a hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. It has a role as a metabolite. A hydroxyisoflavanone that is isoflavanone carrying two hydroxy substituents located at positions 4 and 7. Dihydrodaidzein is one of the most prominent dietary phytoestrogens. S-Dihydrodaidzein is the (S)-enantiomer of dihydrodaidzein which is one of the most prominent dietary phytoestrogens[1][2].

   

Isoflavanone

2,3-dihydro-3-Phenyl-4H-1-benzopyran-4-one

C15H12O2 (224.0837252)


   

(±)-2'-Hydroxydihydrodaidzein

3-(2,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0684702)


(±)-2-hydroxydihydrodaidzein, also known as 2,4,7-trihydroxyisoflavanone, is a member of the class of compounds known as isoflavanones. Isoflavanones are polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4. Thus, (±)-2-hydroxydihydrodaidzein is considered to be a flavonoid lipid molecule (±)-2-hydroxydihydrodaidzein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (±)-2-hydroxydihydrodaidzein can be found in green bean, pulses, and yellow wax bean, which makes (±)-2-hydroxydihydrodaidzein a potential biomarker for the consumption of these food products. (±)-2-Hydroxydihydrodaidzein is found in pulses. (±)-2-Hydroxydihydrodaidzein is isolated from pods of Phaseolus vulgaris (kidney bean) and also from Phaseolus coccineus (scarlet runner bean).

   

Dalbergioidin

2,3-Dihydro-5,7-dihydroxy-3-(2,4-dihydroxyphenyl)-4H-1-benzopyran-4-one, 9CI

C15H12O6 (288.06338519999997)


Isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean). Dalbergioidin is found in many foods, some of which are hyacinth bean, yellow wax bean, adzuki bean, and fruits. Dalbergioidin is found in adzuki bean. Dalbergioidin is isolated from Dolichos biflorus (papadi), Lablab niger (hyacinth bean) and Phaseolus vulgaris (kidney bean

   

Dihydrogenistein

2,3-Dihydro-5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H12O5 (272.0684702)


Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913) [HMDB]. Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products. Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913). Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products.

   

(3R)-Sophorol

(3R)-7-hydroxy-3-(6-hydroxy-2H-1,3-benzodioxol-5-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C16H12O6 (300.06338519999997)


(3r)-sophorol is a member of the class of compounds known as isoflavanones. Isoflavanones are polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4. Thus, (3r)-sophorol is considered to be a flavonoid lipid molecule (3r)-sophorol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (3r)-sophorol can be found in a number of food items such as japanese chestnut, radish, star fruit, and acerola, which makes (3r)-sophorol a potential biomarker for the consumption of these food products.

   

3',4',5,7-Tetrahydroxyisoflavanone

3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O6 (288.06338519999997)


3,4,5,7-Tetrahydroxyisoflavanone is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Muscomosin

4,5,7-trihydroxy-3-methoxy-2,4-dihydrospiro[1-benzopyran-3,7-bicyclo[4.2.0]octane]-1,3,5-trien-4-one

C17H14O6 (314.0790344)


Muscomosin is found in herbs and spices. Muscomosin is a constituent of Muscari comosum (tassel hyacinth). Constituent of Muscari comosum (tassel hyacinth). Muscomosin is found in herbs and spices.

   

3'-Hydroxydihydrodaidzein

3-(3,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0684702)


3-Hydroxydihydrodaidzein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

6-Hydroxydihydrodaidzein

6,7-dihydroxy-3-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0684702)


6-Hydroxydihydrodaidzein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

8-Hydroxydihydrodaidzein

7,8-dihydroxy-3-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0684702)


8-Hydroxydihydrodaidzein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

(+)-Dihydrowighteone

5,7-dihydroxy-3-(4-hydroxyphenyl)-6-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.13106700000003)


(+)-dihydrowighteone is a member of the class of compounds known as isoflavanones. Isoflavanones are polycyclic compounds containing an isoflavan skeleton which bears a ketone at position C4. Thus, (+)-dihydrowighteone is considered to be a flavonoid lipid molecule (+)-dihydrowighteone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-dihydrowighteone can be found in adzuki bean, which makes (+)-dihydrowighteone a potential biomarker for the consumption of this food product.