Classification Term: 170129

生物活性肽 (ontology term: 1f5e8aba9a726b20b65a4ae003cf9e1a)

found 8 associated metabolites at no_class-level_20 metabolite taxonomy ontology rank level.

Ancestor: 短肽

Child Taxonomies: There is no child term of current ontology term.

Prolylglycine

2-{[(2S)-pyrrolidin-2-yl]formamido}acetic acid

C7H12N2O3 (172.0847882)


Prolylglycine is a dipeptide composed of proline and glycine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It is found in urine (PMID: 3782411). L-Prolylglycine is an endogenous metabolite.

   

Gamma-Glutamylmethionine

(2S)-2-amino-4-{[(1S)-1-carboxy-3-(methylsulfanyl)propyl]carbamoyl}butanoic acid

C10H18N2O5S (278.0936378)


gamma-Glutamylmethionine is a dipeptide composed of gamma-glutamate and methionine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylmethionine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylmethionine is found in onion-family vegetables. It is isolated from the seeds of onion (Allium cepa), kidney bean (Phaseolus vulgaris), mung bean (Vigna radiata), garlic (Allium sativum), and black gram (Vigna mungo).

   

Gamma-Glutamylthreonine

(2S)-2-Amino-5-{[(1S,2R)-1-carboxy-2-hydroxypropyl]amino}-5-oxopentanoic acid

C9H16N2O6 (248.10083160000002)


gamma-Glutamylthreonine is a dipeptide composed of gamma-glutamate and threonine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylthreonine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Valylarginine

(2S)-2-[(2S)-2-amino-3-methylbutanamido]-5-carbamimidamidopentanoic acid

C11H23N5O3 (273.18008080000004)


Valylarginine is a dipeptide composed of valine and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Gamma-Glutamylhistidine

(2S)-2-amino-4-{[(1S)-1-carboxy-2-(1H-imidazol-4-yl)ethyl]carbamoyl}butanoic acid

C11H16N4O5 (284.1120646)


gamma-Glutamylhistidine is a dipeptide composed of gamma-glutamate and histidine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylhistidine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. γ-Glutamylhistidine is a polypeptide that can be found by peptide screening. Peptide screening is a research tool that pools active peptides primarily by immunoassay. Peptide screening can be used for protein interaction, functional analysis, epitope screening, especially in the field of agent research and development[1].

   

APGPR Enterostatin

(2S)-2-({[(2S)-1-[2-({[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)acetyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamidopentanoate

C21H36N8O6 (496.2757676)


Enterostatin APGPR (Ala-Pro-Gly-Pro-Arg) is a pentapeptide released from procolipase during fat digestion. In addition to the pancreas, enterostatin-immunoreactive cells are also present in the antrum and proximal small intestine. Enterostatin selectively reduces fat intake, decreases insulin secretion, and also increases energy expenditure by activating brown adipose tissue during high-fat feeding. Enterostatins are pentapeptides derived from the NH2-terminus of procolipase after tryptic cleavage and belong to the family of gut-brain peptides. Enterostatin is generated by the action of trypsin on procolipase in the intestinal lumen. Its structure is highly conserved in evolution, with an amino acid sequence of XPXPR. Three enterostatin sequences, Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR), have been studied extensively and shown to be almost equally effective in their ability to decrease dietary fat preference. Enterostatins are selective inhibitors of appetite, particularly of fat intake. Hyperenterostatinemia in obesity is probably secondary to enterostatin resistance; therefore, the regulatory system is producing more enterostatin to counteract the resistance. This is very similar to hyperinsulinemia and hyperleptinemia in obesity. The diminution in the meal-induced secretion of enterostatin in obesity suggests a delay in the appearance of satiety, leading to increased caloric intake. In rats enterostatin decreases body weight by decreasing fat-calorie intake and increasing the sympathetic firing rate of the nerves in interscapular brown adipose tissue. Enterostatin levels are elevated in the plasma of obese women, and enterostatin secretion is diminished after satiety. Oral administration of enterostatin, however, has no effect on food intake, energy expenditure, or body weight in subjects with a preference for a high-fat diet experiencing a negative energy and fat balance, and the physiology of enterostatin in humans remains to be defined. (PMID: 10084574, 9526102, 8886249) [HMDB] Enterostatin APGPR (Ala-Pro-Gly-Pro-Arg) is a pentapeptide released from procolipase during fat digestion. In addition to the pancreas, enterostatin-immunoreactive cells are also present in the antrum and proximal small intestine. Enterostatin selectively reduces fat intake, decreases insulin secretion, and also increases energy expenditure by activating brown adipose tissue during high-fat feeding. Enterostatins are pentapeptides derived from the NH2-terminus of procolipase after tryptic cleavage and belong to the family of gut-brain peptides. Enterostatin is generated by the action of trypsin on procolipase in the intestinal lumen. Its structure is highly conserved in evolution, with an amino acid sequence of XPXPR. Three enterostatin sequences, Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR), have been studied extensively and shown to be almost equally effective in their ability to decrease dietary fat preference. Enterostatins are selective inhibitors of appetite, particularly of fat intake. Hyperenterostatinemia in obesity is probably secondary to enterostatin resistance; therefore, the regulatory system is producing more enterostatin to counteract the resistance. This is very similar to hyperinsulinemia and hyperleptinemia in obesity. The diminution in the meal-induced secretion of enterostatin in obesity suggests a delay in the appearance of satiety, leading to increased caloric intake. In rats enterostatin decreases body weight by decreasing fat-calorie intake and increasing the sympathetic firing rate of the nerves in interscapular brown adipose tissue. Enterostatin levels are elevated in the plasma of obese women, and enterostatin secretion is diminished after satiety. Oral administration of enterostatin, however, has no effect on food intake, energy expenditure, or body weight in subjects with a preference for a high-fat diet experiencing a negative energy and fat balance, and the physiology of enterostatin in humans remains to be defined. (PMID: 10084574, 9526102, 8886249). Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake. Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake.

   

APGPR Enterostatin

(2S)-2-[[(2S)-1-[2-[[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidine-2-carbonyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid

C21H36N8O6 (496.2757676)


Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake. Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake.