Classification Term: 1255
1-alkyl,2-acetylglycero-3-phosphocholines (ontology term: CHEMONTID:0004262)
Glycerophosphocholines that carry exactly one acetyl chain attached to the glycerol moiety through an ester linkage at the O2-position, and one alkyl chain attached through an ether linkage at the O1-position." []
found 4 associated metabolites at family
metabolite taxonomy ontology rank level.
Ancestor: 1-alkyl,2-acylglycero-3-phosphocholines
Child Taxonomies: There is no child term of current ontology term.
Platelet-activating factor
Platelet-activating factor, also known as PAF and PC(O-16:0/2:0), is a ubiquitous, potent phospholipid activator and mediator of inflammation that has an important role in the pathogenesis of inflammatory disorders and cardiovascular disease. PAF is able to cause platelet aggregation and anaphylaxis. PAF is synthesized continuously in low quantities in many different types of cells, but especially those involved in host defence, such as macrophages, monocytes, granulocytes, neutrophils, platelets, and endothelial cells. Platelet-activating factor receptor (PAFR) is a G-protein coupled receptor (GPCR) located on the cell membranes of a variety of cells. Once bound to its receptor, PAF mobilizes calcium and activates a wide range of signalling pathways (e.g. phospholipase C-mediated signalling (PMID: 26616844). C16-PAF (PAF (C16)), a phospholipid mediator, is a platelet-activating factor and ligand for PAF G-protein-coupled receptor (PAFR). C16-PAF exhibits anti-apoptotic effect and inhibits caspase-dependent death by activating the PAFR. C16-PAF is a potent MAPK and MEK/ERK activator. C16-PAF induces increased vascular permeability[1][2][3][4][5].
PC(18:1(9Z)e/2:0)
2-Acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine is an intermediate in ether lipid metabolism. 2-Acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine is converted from 2-acetyl-1-octadecyl-sn-glycerol via diacylglycerol cholinephosphotransferase (EC: 2.7.8.2). This is an ether lipid with platelet-activating factor functions which has an acetyl group instead of an acyl chain at the second position (SN-2). Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. 2-Acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine is an intermediate in ether lipid metabolism. 2-Acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine is converted from 2-acetyl-1-octadecyl-sn-glycerol via diacylglycerol cholinephosphotransferase (EC: 2.7.8.2). This is an ether lipid with platelet-activating factor functions which has an acetyl group instead of an acyl chain at the second position (SN-2). Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage.
(2-Acetyloxy-3-octadecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents