LysoPC(16:0/0:0) (BioDeep_00000018630)

 

Secondary id: BioDeep_00000419555, BioDeep_00001893401

human metabolite Endogenous blood metabolite LipidSearch


代谢物信息卡片


(2R)-2-Hydroxy-3-(hexadecanoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphoric acid

化学式: C24H50NO7P (495.33247200000005)
中文名称: 1-棕榈酰-sn-甘油-3-磷酸胆碱
谱图信息: 最多检出来源 Viridiplantae(plant) 0.02%

Reviewed

Last reviewed on 2024-07-25.

Cite this Page

LysoPC(16:0/0:0). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/lysopc(16:0_0:0) (retrieved 2024-11-26) (BioDeep RN: BioDeep_00000018630). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)O
InChI: InChI=1S/C24H50NO7P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-24(27)30-21-23(26)22-32-33(28,29)31-20-19-25(2,3)4/h23,26H,5-22H2,1-4H3/t23-/m1/s1

描述信息

LysoPC(16:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(16:0), in particular, consists of one chain of palmitic acid at the C-1 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB]
LysoPC(16:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(16:0), in particular, consists of one chain of palmitic acid at the C-1 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.

同义名列表

81 个代谢物同义名

(2R)-2-Hydroxy-3-(hexadecanoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphoric acid; (2-{[(2R)-3-(hexadecanoyloxy)-2-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium; (2R)-2-Hydroxy-3-(hexadecanoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphate; 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine; 1-O-Palmitoyl-2-lyso-sn-glycero-3-phosphocholine; gamma-Palmitoyl-L-alpha-lysophosphatidylcholine; 1-Hexadecanoyl-sn-glycerol-3-phosphorylcholine; 1-Palmitoyl-2-lyso-sn-glycero-3-phosphocholine; 1-Palmitoyl-sn-glycerol-3-phosphatidylcholine; 1-O-Palmitoyl-sn-glyceryl-3-phosphorylcholine; 1-O-Hexadecylpropanediol 3-phosphorylcholine; 1-Palmitoyl-L-alpha-lysophosphatidylcholine; 1-Palmitoyl-sn-glycerol-3-phosphorylcholine; 1-hexadecanoyl-sn-glycero-3-phosphocholine; 1-Palmitoyl-sn-glycero-3-phosphorylcholine; 1-O-Palmitoyl-sn-glycero-3-phosphocholine; Hydroxide inner salt(+-)-isomer OF we 201; 1-Hexadecanoyl-3-glycerophosphorylcholine; Palmitoyl L-alpha-lysophosphatidylcholine; Hydroxide inner salt(R)-isomer OF we 201; 1-Hexadecanoyl-2-lysophosphatidylcholine; L-alpha-Palmitoyllysophosphatidylcholine; L-alpha-Lysopalmitoylphosphatidylcholine; Hydroxide inner salt(S)-isomer OF we 201; 1-Palmitoyl-sn-glycerol-3-phosphocholine; 1-hexadecyl-sn-glycero-3-phosphocholine; Γ-palmitoyl-L-α-lysophosphatidylcholine; 1-Palmitoyl-L-α-lysophosphatidylcholine; 1-Palmitoyl-sn-glycero-3-phosphocholine; 1-Hexadecanoyl-glycero-3-phosphocholine; 1-Palmitoyl-3-glycerylphosphorylcholine; 1-Palmitoylglycerol-3-phosphorylcholine; 1-Palmitoyl-2-lysophosphatidylcholine; Palmitoyl L-α-lysophosphatidylcholine; 1-Palmitoyl-glycero-3-phosphocholine; L-Α-lysopalmitoylphosphatidylcholine; L-Α-palmitoyllysophosphatidylcholine; 1-Palmitoyl-lysophosphatidylcholine; Palmitoyl L-lysophosphatidylcholine; 1-Hexadecanoylglycerophosphocholine; 1-Palmitoyllysophosphatidylcholine; Palmitoyllysophosphatidyl choline; Lysophosphatidylcholine(16:0/0:0); Palmitoyl lysophosphatidylcholine; 1-Palmitoylglycerophosphocholine; 1-palmitoyl-phosphatidylcholine; 1-16:0-Lysophosphatidylcholine; 1-Palmitoylphosphatidylcholine; Palmitoyl L-alpha-lysolecithin; Lysophosphatidylcholine(16:0); C(16)-Lysophosphatidylcholine; Lysophosphatidylcholine C16:0; Palmitoyl L-α-lysolecithin; 1-Hexadecanoyllysolecithin; L-Palmitoyllysolecithin; 1-Palmitoyllysolecithin; 1-Palmitoyl-GPC (16:0); Palmitoyllysolecithin; 1-Palmitoyllecithin; 1-Pam-2-lysoptdcho; LysoPC(16:0/0:0); LysoPC 16:0/0:0; 1-Palmitoyl-GPC; GPCho(16:0/0:0); LyPC(16:0/0:0); GPCho 16:0/0:0; LysoPC a C16:0; LPC(16:0/0:0); GPC(16:0/0:0); 1-16:0-LysoPC; LPC 16:0/0:0; LysoPC(16:0); PC(16:0/0:0); 16:0 LYSO-PC; LysoPC 16:0; LyPC(16:0); GPC(16:0); LPC(16:0); LYSO-PC; MPPC; 1-Palmitoyl-sn-glycero-3-phosphocholine



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

110 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(99)

COVID-19 Disease Map(0)

PathBank(8)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ai-Ping Li, Liu Yang, Ting Cui, Li-Chao Zhang, Yue-Tao Liu, Yan Yan, Ke Li, Xue-Mei Qin. Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Oct; 77(?):153274. doi: 10.1016/j.phymed.2020.153274. [PMID: 32771537]
  • Pin Zhang, Veronica Villanueva, Joseph Kalkowski, Chang Liu, Alexander J Donovan, Wei Bu, Mark L Schlossman, Binhua Lin, Ying Liu. Molecular interactions of phospholipid monolayers with a model phospholipase. Soft matter. 2019 May; 15(20):4068-4077. doi: 10.1039/c8sm01154k. [PMID: 30958491]
  • Tsuyoshi Goto. A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors. Bioscience, biotechnology, and biochemistry. 2019 Apr; 83(4):579-588. doi: 10.1080/09168451.2018.1559025. [PMID: 30572788]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Nguyen Phuoc Long, Dong Kyu Lim, Changyeun Mo, Giyoung Kim, Sung Won Kwon. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice. Scientific reports. 2017 08; 7(1):8552. doi: 10.1038/s41598-017-08892-0. [PMID: 28819110]
  • Gillian T Rich, Maria Buchweitz, Mark S Winterbone, Paul A Kroon, Peter J Wilde. Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids. Nutrients. 2017 Feb; 9(2):. doi: 10.3390/nu9020111. [PMID: 28165426]
  • Tsogbadrakh Mishig-Ochir, Davaadulam Gombosuren, Altanchimeg Jigjid, Badamkhatan Tuguldur, Galbadrakh Chuluunbaatar, Enerelt Urnukhsaikhan, Chinar Pathak, Bong-Jin Lee. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Protein and peptide letters. 2017; 24(3):197-205. doi: 10.2174/0929866523666161216123509. [PMID: 27993125]
  • Natalie J Mitchell, Pamela Seaton, Antje Pokorny. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Biochimica et biophysica acta. 2016 May; 1858(5):988-94. doi: 10.1016/j.bbamem.2015.10.014. [PMID: 26514602]
  • Tilman Kühn, Anna Floegel, Disorn Sookthai, Theron Johnson, Ulrike Rolle-Kampczyk, Wolfgang Otto, Martin von Bergen, Heiner Boeing, Rudolf Kaaks. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC medicine. 2016 Jan; 14(?):13. doi: 10.1186/s12916-016-0552-3. [PMID: 26817443]
  • Haruya Takahashi, Tsuyoshi Goto, Yota Yamazaki, Kosuke Kamakari, Mariko Hirata, Hideyuki Suzuki, Daisuke Shibata, Rieko Nakata, Hiroyasu Inoue, Nobuyuki Takahashi, Teruo Kawada. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α. Journal of lipid research. 2015 Feb; 56(2):254-65. doi: 10.1194/jlr.m052464. [PMID: 25510248]
  • Yanbo Yang, Takashi Kuwano, William R Lagor, Carolyn J Albert, Siobhan Brenton, Daniel J Rader, David A Ford, Robert J Brown. Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species. Lipids. 2014 Jun; 49(6):505-15. doi: 10.1007/s11745-014-3907-6. [PMID: 24777581]
  • Huawei Zhang, Peng Fu, Beilei Ke, Shuping Wang, Min Li, Lin Han, Chengcheng Peng, Weidong Zhang, Runhui Liu. Metabolomic analysis of biochemical changes in the plasma and urine of collagen-induced arthritis in rats after treatment with Huang-Lian-Jie-Du-Tang. Journal of ethnopharmacology. 2014 May; 154(1):55-64. doi: 10.1016/j.jep.2014.03.007. [PMID: 24709313]
  • Charles T R Heffern, Luka Pocivavsek, Anna A Birukova, Nurgul Moldobaeva, Valery N Bochkov, Ka Yee C Lee, Konstantin G Birukov. Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity. Chemistry and physics of lipids. 2013 Oct; 175-176(?):9-19. doi: 10.1016/j.chemphyslip.2013.07.003. [PMID: 23911706]
  • Alexandre Therrien, Puttaswamy Manjunath, Michel Lafleur. Chemical and physical requirements for lipid extraction by bovine binder of sperm BSP1. Biochimica et biophysica acta. 2013 Feb; 1828(2):543-51. doi: 10.1016/j.bbamem.2012.08.020. [PMID: 22960042]
  • Tsutomu Matsubara, Naoki Tanaka, Misako Sato, Dong Wook Kang, Kristopher W Krausz, Kathleen C Flanders, Kazuo Ikeda, Hans Luecke, Lalage M Wakefield, Frank J Gonzalez. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of lipid research. 2012 Dec; 53(12):2698-707. doi: 10.1194/jlr.m031773. [PMID: 23034213]
  • Nguyen Dang Hung, Dai-Eun Sok, Mee Ree Kim. Prevention of 1-palmitoyl lysophosphatidylcholine-induced inflammation by polyunsaturated acyl lysophosphatidylcholine. Inflammation research : official journal of the European Histamine Research Society ... [et al.]. 2012 May; 61(5):473-83. doi: 10.1007/s00011-012-0434-x. [PMID: 22252240]
  • Kozo Nakai, Kozo Yoneda, Yasuhiro Ishihara, Koji Ohmori, Tetsuya Moriue, Junsuke Igarashi, Masakazu Kohno, Hiroaki Kosaka, Yasuo Kubota. Lipid peroxidation-induced VEGF expression in the skin of KKAy obese mice. Experimental dermatology. 2011 May; 20(5):388-93. doi: 10.1111/j.1600-0625.2010.01223.x. [PMID: 21355888]
  • Marcin Broniatowski, Michał Flasiński, Patrycja Dynarowicz-Łatka, Jarosław Majewski. Grazing incidence diffraction and X-ray reflectivity studies of the interactions of inorganic mercury salts with membrane lipids in Langmuir monolayers at the air/water interface. The journal of physical chemistry. B. 2010 Jul; 114(29):9474-84. doi: 10.1021/jp101668n. [PMID: 20604557]
  • Junko Adachi, Naoki Yoshioka, Mariko Sato, Kanako Nakagawa, Yorihiro Yamamoto, Yasuhiro Ueno. Detection of phosphatidylcholine oxidation products in rat heart using quadrupole time-of-flight mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2005 Aug; 823(1):37-43. doi: 10.1016/j.jchromb.2005.03.035. [PMID: 16055051]
  • Andrzej S Januszewski, Nathan L Alderson, Alicia J Jenkins, Suzanne R Thorpe, John W Baynes. Chemical modification of proteins during peroxidation of phospholipids. Journal of lipid research. 2005 Jul; 46(7):1440-9. doi: 10.1194/jlr.m400442-jlr200. [PMID: 15805546]
  • Mounir Traïkia, Carole Marbeuf-Gueye, Edith Hantz, Laurence Le Moyec. Impact of exogenous lysolipids on sensitive and multidrug resistant K562 cells: 1H NMR studies. Chemico-biological interactions. 2005 Jan; 151(2):83-94. doi: 10.1016/j.cbi.2004.12.005. [PMID: 15698580]
  • Lu-Cheng Cao, Thomas W Honeyman, Rachel Cooney, Lori Kennington, Cheryl R Scheid, Julie A Jonassen. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney international. 2004 Nov; 66(5):1890-900. doi: 10.1111/j.1523-1755.2004.00963.x. [PMID: 15496160]
  • Md Emdadul Haque, Barry R Lentz. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects. Biochemistry. 2004 Mar; 43(12):3507-17. doi: 10.1021/bi035794j. [PMID: 15035621]
  • Jingxiong Wang, Yiqiang Zhang, Huizhen Wang, Hong Han, Stanley Nattel, Baofeng Yang, Zhiguo Wang. Potential mechanisms for the enhancement of HERG K+ channel function by phospholipid metabolites. British journal of pharmacology. 2004 Feb; 141(4):586-99. doi: 10.1038/sj.bjp.0705646. [PMID: 14744814]
  • Rosa Bartucci, Salvatore Belsito, Luigi Sportelli. Spin-label electron spin resonance studies of micellar dispersions of PEGs-PEs polymer-lipids. Chemistry and physics of lipids. 2003 Jul; 124(2):111-22. doi: 10.1016/s0009-3084(03)00047-1. [PMID: 12818737]
  • Vadim Cherezov, Jeffrey Clogston, Yohann Misquitta, Wissam Abdel-Gawad, Martin Caffrey. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophysical journal. 2002 Dec; 83(6):3393-407. doi: 10.1016/s0006-3495(02)75339-3. [PMID: 12496106]
  • Jesper Davidsen, Ole G Mouritsen, Kent Jørgensen. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes. Biochimica et biophysica acta. 2002 Aug; 1564(1):256-62. doi: 10.1016/s0005-2736(02)00461-3. [PMID: 12101020]
  • A Alonso, F M Goñi, J T Buckley. Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers. Biochemistry. 2000 Nov; 39(46):14019-24. doi: 10.1021/bi001739o. [PMID: 11087349]
  • M Yoshinari, A H Shi, H Yoshizumi, M Wakisaka, M Iwase, M Fujishima. Probucol reduces lysophosphatidylcholines in low-density lipoprotein. European journal of clinical pharmacology. 2000 Feb; 55(11-12):787-92. doi: 10.1007/s002280050698. [PMID: 10805055]
  • A Shi, M Yoshinari, K Iino, M Wakisaka, M Iwase, M Fujishima. Lysophosphatidylcholine molecular species in low density lipoprotein and high density lipoprotein in alloxan-induced diabetic rats: effect of probucol. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 1999; 107(6):337-42. doi: 10.1055/s-0029-1212123. [PMID: 10543409]
  • F Okajima, K Sato, H Tomura, A Kuwabara, H Nochi, K Tamoto, Y Kondo, Y Tokumitsu, M Ui. Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/Ca2+ system in HL-60 leukaemia cells. The Biochemical journal. 1998 Dec; 336 ( Pt 2)(?):491-500. doi: 10.1042/bj3360491. [PMID: 9820828]
  • L Arbibe, K Koumanov, D Vial, C Rougeot, G Faure, N Havet, S Longacre, B B Vargaftig, G Béréziat, D R Voelker, C Wolf, L Touqui. Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. The Journal of clinical investigation. 1998 Sep; 102(6):1152-60. doi: 10.1172/jci3236. [PMID: 9739049]
  • J B Henshaw, C A Olsen, A R Farnbach, K H Nielson, J D Bell. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Biochemistry. 1998 Jul; 37(30):10709-21. doi: 10.1021/bi9728809. [PMID: 9692961]
  • M R Wenk, J Seelig. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study. Biochimica et biophysica acta. 1998 Jul; 1372(2):227-36. doi: 10.1016/s0005-2736(98)00059-5. [PMID: 9675291]
  • S Günther-Ausborn, T Stegmann. How lysophosphatidylcholine inhibits cell-cell fusion mediated by the envelope glycoprotein of human immunodeficiency virus. Virology. 1997 Sep; 235(2):201-8. doi: 10.1006/viro.1997.8699. [PMID: 9281499]
  • H Wu, L Zheng, B R Lentz. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Biochemistry. 1996 Sep; 35(38):12602-11. doi: 10.1021/bi960168q. [PMID: 8823198]
  • Y C Chai, P H Howe, P E DiCorleto, G M Chisolm. Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cells. Evidence for release of fibroblast growth factor-2. The Journal of biological chemistry. 1996 Jul; 271(30):17791-7. doi: 10.1074/jbc.271.30.17791. [PMID: 8663300]
  • N Yamamoto, V R Naraparaju. Vitamin D3-binding protein as a precursor for macrophage activating factor in the inflammation-primed macrophage activation cascade in rats. Cellular immunology. 1996 Jun; 170(2):161-7. doi: 10.1006/cimm.1996.0148. [PMID: 8660814]
  • S P Bhamidipati, J A Hamilton. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Biochemistry. 1995 Apr; 34(16):5666-77. doi: 10.1021/bi00016a043. [PMID: 7727427]
  • H M Wilson, W Neumuller, H Eibl, W H Welch, R C Reitz. Structural basis of the phospholipid acyltransferase enzyme substrate specificity: a computer modeling study of the phospholipid acceptor molecule. Journal of lipid research. 1995 Mar; 36(3):429-39. doi: 10.1016/s0022-2275(20)39877-1. [PMID: 7775855]
  • M Alberghina, S Infarinato, C D Anfuso, G Lupo. 1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS letters. 1994 Sep; 351(2):181-5. doi: 10.1016/0014-5793(94)00811-6. [PMID: 8082761]
  • Q Chen, A Nilsson. Interconversion of alpha-linolenic acid in rat intestinal mucosa: studies in vivo and in isolated villus and crypt cells. Journal of lipid research. 1994 Apr; 35(4):601-9. doi: ". [PMID: 7911819]
  • J M Smaby, J M Muderhwa, H L Brockman. Is lateral phase separation required for fatty acid to stimulate lipases in a phosphatidylcholine interface?. Biochemistry. 1994 Feb; 33(7):1915-22. doi: 10.1021/bi00173a039. [PMID: 8110796]
  • T Sato, M Arita, T Kiyosue. Differential mechanism of block of palmitoyl lysophosphatidylcholine and of palmitoylcarnitine on inward rectifier K+ channels of guinea-pig ventricular myocytes. Cardiovascular drugs and therapy. 1993 Aug; 7 Suppl 3(?):575-84. doi: 10.1007/bf00877623. [PMID: 8251427]
  • D W Phillipson, A A Tymiak, J G Tuttle, K S Hartl, T W Harper, M S Bolgar, G T Allen, M L Ogletree. Isolation and identification of lysophosphatidylcholines as endogenous modulators of thromboxane receptors. Journal of lipid mediators. 1993 Jun; 7(2):155-67. doi: NULL. [PMID: 8400117]
  • K M Maloney, D W Grainger. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chemistry and physics of lipids. 1993 Apr; 65(1):31-42. doi: 10.1016/0009-3084(93)90079-i. [PMID: 8348675]
  • H Delacroix, T Gulik-Krzywicki, P Mariani, V Luzzati. Freeze-fracture electron microscope study of lipid systems. The cubic phase of space group Pm3n. Journal of molecular biology. 1993 Jan; 229(2):526-39. doi: 10.1006/jmbi.1993.1052. [PMID: 8429561]
  • A J Dannenberg, D Zakim. Dietary lipid regulates the amount and functional state of UDP-glucuronosyltransferase in rat liver. The Journal of nutrition. 1992 Aug; 122(8):1607-13. doi: 10.1093/jn/122.8.1607. [PMID: 1640253]
  • F Plane, K R Bruckdorfer, P Kerr, A Steuer, M Jacobs. Oxidative modification of low-density lipoproteins and the inhibition of relaxations mediated by endothelium-derived nitric oxide in rabbit aorta. British journal of pharmacology. 1992 Jan; 105(1):216-22. doi: 10.1111/j.1476-5381.1992.tb14237.x. [PMID: 1596684]
  • J A Teruel, F Soler, J C Gómez-Fernández. On the effect of lysophosphatidylcholine, platelet activating factor and other surfactants on calcium permeability in sarcoplasmic reticulum vesicles. Chemistry and physics of lipids. 1991 Aug; 59(1):1-7. doi: 10.1016/0009-3084(91)90057-i. [PMID: 1790577]
  • P A Sellner, A R Phillips. Phospholipid synthesis by chick retinal microsomes: fatty acid preference and effect of fatty acid binding protein. Lipids. 1991 Jan; 26(1):62-7. doi: 10.1007/bf02544026. [PMID: 2051885]
  • M Jansson, R L Thurmond, T P Trouard, M F Brown. Magnetic alignment and orientational order of dipalmitoylphosphatidylcholine bilayers containing palmitoyllysophosphatidylcholine. Chemistry and physics of lipids. 1990 Jun; 54(3-4):157-70. doi: 10.1016/0009-3084(90)90009-g. [PMID: 2225236]
  • J A Killian, A M de Jong, J Bijvelt, A J Verkleij, B de Kruijff. Induction of non-bilayer lipid structures by functional signal peptides. The EMBO journal. 1990 Mar; 9(3):815-9. doi: 10.1002/j.1460-2075.1990.tb08178.x. [PMID: 2178926]
  • M G Palmgren, M Sommarin, P Ulvskov, C Larsson. Effect of detergents on the H(+)-ATPase activity of inside-out and right-side-out plant plasma membrane vesicles. Biochimica et biophysica acta. 1990 Jan; 1021(2):133-40. doi: 10.1016/0005-2736(90)90025-j. [PMID: 2154256]
  • C Hochhuth, D Berkovic, H Eibl, C Unger, D Doenecke. Effects of antineoplastic phospholipids on parameters of cell differentiation in U937 cells. Journal of cancer research and clinical oncology. 1990; 116(5):459-66. doi: 10.1007/bf01612994. [PMID: 1699946]
  • S Naydenova, Z Lalchev, A G Petrov, D Exerowa. Pure and mixed lipid black foam films as models of membrane fusion. European biophysics journal : EBJ. 1990; 17(6):343-7. doi: 10.1007/bf00258383. [PMID: 2307142]
  • S Naderi, A Carruthers, D L Melchior. Modulation of red blood cell sugar transport by lyso-lipid. Biochimica et biophysica acta. 1989 Oct; 985(2):173-83. doi: 10.1016/0005-2736(89)90363-5. [PMID: 2804103]
  • M D King, D Marsh. Polymorphic phase behavior of lysopalmitoylphosphatidylcholine in poly(ethylene glycol)-water mixtures. Biochemistry. 1989 Jun; 28(13):5643-7. doi: 10.1021/bi00439a046. [PMID: 2775728]
  • K Vehmeyer, D J Kim, G A Nagel, H Eibl, C Unger. Effect of ether lipids on mouse granulocyte-macrophage progenitor cells. Cancer chemotherapy and pharmacology. 1989; 24(1):58-60. doi: 10.1007/bf00254107. [PMID: 2720891]
  • D Zakim, M Cantor, H Eibl. Phospholipids and UDP-glucuronosyltransferase. Structure/function relationships. The Journal of biological chemistry. 1988 Apr; 263(11):5164-9. doi: 10.1016/s0021-9258(18)60694-5. [PMID: 3128536]
  • P M Macdonald, J Seelig. Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry. 1988 Apr; 27(7):2357-64. doi: 10.1021/bi00407a017. [PMID: 2454654]
  • D J Siminovitch, P T Wong, H H Mantsch. High pressure infrared spectroscopy of lipid bilayers: new tests for interdigitation. Biochimica et biophysica acta. 1987 Jun; 900(1):163-7. doi: 10.1016/0005-2736(87)90289-6. [PMID: 3593709]
  • S Kluge, K Gawrisch, P Nuhn. Loss of infectivity of red clover mottle virus by lysolecithin. Acta virologica. 1987 Mar; 31(2):185-8. doi: ". [PMID: 2886030]
  • A Tamura, T Tanaka, T Yamane, R Nasu, T Fujii. Quantitative studies on translocation and metabolic conversion of lysophosphatidylcholine incorporated into the membrane of intact human erythrocytes from the medium. Journal of biochemistry. 1985 Jan; 97(1):353-9. doi: 10.1093/oxfordjournals.jbchem.a135060. [PMID: 3997795]
  • H Bador, R Morelis, P Louisot. Temperature dependence of membranous and solubilized sialyltransferase activities in the presence of 1-palmitoyl-sn-glycero-3-phosphorylcholine and fatty acids. Biochimie. 1984 Mar; 66(3):223-33. doi: 10.1016/0300-9084(84)90066-x. [PMID: 6743698]
  • H Bador, R Morelis, P Louisot. Effects of 1-palmitoyl-sn-glycero-3-phosphorylcholine on the properties of a solubilized sialyltransferase activity from mouse liver. Biochimica et biophysica acta. 1982 Aug; 706(1):36-41. doi: 10.1016/0167-4838(82)90372-7. [PMID: 7126592]