(4E,14Z)-2-Aminooctadeca-4,14-diene-1,3-diol (BioDeep_00000171390)

   

human metabolite


代谢物信息卡片


(4E,14Z)-2-Aminooctadeca-4,14-diene-1,3-diol

化学式: C18H35NO2 (297.2668)
中文名称: 4E,14Z-二烯鞘氨醇
谱图信息: 最多检出来源 Homo sapiens(not specific) 49.91%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

(4E,14Z)-2-Aminooctadeca-4,14-diene-1,3-diol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/(4e,14z)-2-aminooctadeca-4,14-diene-1,3-diol (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000171390). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCC=CCCCCCCCCC=CC(C(CO)N)O
InChI: InChI=1S/C18H35NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h4-5,14-15,17-18,20-21H,2-3,6-13,16,19H2,1H3/b5-4-,15-14+

描述信息

同义名列表

1 个代谢物同义名

(4E,14Z)-2-Aminooctadeca-4,14-diene-1,3-diol



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Yuta Murai, Kohei Yuyama, Daisuke Mikami, Yasuyuki Igarashi, Kenji Monde. Penta-deuterium-labeled 4E, 8Z-sphingadienine for rapid analysis in sphingolipidomics study. Chemistry and physics of lipids. 2022 07; 245(?):105202. doi: 10.1016/j.chemphyslip.2022.105202. [PMID: 35337796]
  • Haruka Shimizu, Masaki Kuse, Ken-Ichiro Minato, Masashi Mizuno. Anti-allergic property of 4,8-sphingadienine stereoisomers in vivo and in vitro model. Biochemical and biophysical research communications. 2021 11; 577(?):32-37. doi: 10.1016/j.bbrc.2021.08.071. [PMID: 34500233]
  • Mike Lange, Georgia Angelidou, Zhixu Ni, Angela Criscuolo, Jürgen Schiller, Matthias Blüher, Maria Fedorova. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell reports. Medicine. 2021 10; 2(10):100407. doi: 10.1016/j.xcrm.2021.100407. [PMID: 34755127]
  • Shinji Yamashita, Chisato Higaki, Asuka Kanai, Nobuhiro Kikuchi, Daisuke Suzuki, Mikio Kinoshita, Teruo Miyazawa. Sphingolipid Properties in Sake Rice Cultivars and Changes During Polishing and Brewing. Journal of oleo science. 2021 Feb; 70(2):203-212. doi: 10.5650/jos.ess20234. [PMID: 33456006]
  • Koichi Eguchi, Daisuke Mikami, Hui Sun, Takuya Tsumita, Kaori Takahashi, Katsuyuki Mukai, Kohei Yuyama, Yasuyuki Igarashi. Blood-brain barrier permeability analysis of plant ceramides. PloS one. 2020; 15(11):e0241640. doi: 10.1371/journal.pone.0241640. [PMID: 33137152]
  • Seigo Usuki, Noriko Tamura, Tomohiro Tamura, Kunikazu Tanji, Daisuke Mikami, Katsuyuki Mukai, Yasuyuki Igarashi. Neurite Outgrowth and Morphological Changes Induced by 8-trans Unsaturation of Sphingadienine in kCer Molecular Species. International journal of molecular sciences. 2019 Apr; 20(9):. doi: 10.3390/ijms20092116. [PMID: 31035716]
  • Xinyu Liu, Miriam Hoene, Peiyuan Yin, Louise Fritsche, Peter Plomgaard, Jakob S Hansen, Christos T Nakas, Andreas M Niess, Jens Hudemann, Michael Haap, Maimuna Mendy, Cora Weigert, Xiaolin Wang, Andreas Fritsche, Andreas Peter, Hans-Ulrich Häring, Guowang Xu, Rainer Lehmann. Quality Control of Serum and Plasma by Quantification of (4E,14Z)-Sphingadienine-C18-1-Phosphate Uncovers Common Preanalytical Errors During Handling of Whole Blood. Clinical chemistry. 2018 05; 64(5):810-819. doi: 10.1373/clinchem.2017.277905. [PMID: 29567661]
  • J H Suh, A M Makarova, J M Gomez, L A Paul, J D Saba. An LC/MS/MS method for quantitation of chemopreventive sphingadienes in food products and biological samples. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Sep; 1061-1062(?):292-299. doi: 10.1016/j.jchromb.2017.07.040. [PMID: 28772225]
  • Aoi Fujii, Yuki Manabe, Kazuhiko Aida, Tsuyoshi Tsuduki, Takashi Hirata, Tatsuya Sugawara. Selective Absorption of Dietary Sphingoid Bases from the Intestine via Efflux by P-Glycoprotein in Rats. Journal of nutritional science and vitaminology. 2017; 63(1):44-50. doi: 10.3177/jnsv.63.44. [PMID: 28367925]
  • Benoit Colsch, Carlos Afonso, Iuliana Popa, Jacques Portoukalian, Françoise Fournier, Jean-Claude Tabet, Nicole Baumann. Characterization of the ceramide moieties of sphingoglycolipids from mouse brain by ESI-MS/MS: identification of ceramides containing sphingadienine. Journal of lipid research. 2004 Feb; 45(2):281-6. doi: 10.1194/jlr.m300331-jlr200. [PMID: 14595000]
  • Tatsuya Sugawara, Mikio Kinoshita, Masao Ohnishi, Junichi Nagata, Morio Saito. Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. The Journal of nutrition. 2003 Sep; 133(9):2777-82. doi: 10.1093/jn/133.9.2777. [PMID: 12949364]