Oxidanyl (BioDeep_00000897354)
Secondary id: BioDeep_00000011436
Volatile Flavor Compounds
代谢物信息卡片
化学式: HO (17.0027396)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: [OH]
InChI: InChI=1S/HO/h1H
描述信息
D009676 - Noxae > D016877 - Oxidants
同义名列表
4 个代谢物同义名
Hydroxyl radical; Hydrogen oxide; Oxidanyl; Hydroxyl radical
数据库引用编号
9 个数据库交叉引用编号
- ChEBI: CHEBI:29191
- KEGG: C16844
- PubChem: 157350
- ChEMBL: CHEMBL1689064
- MeSH: Hydroxyl Radical
- CAS: 3352-57-6
- PubChem: 96023368
- NIKKAJI: J209.359F
- KNApSAcK: 29191
分类词条
相关代谢途径
Reactome(11)
BioCyc(3)
代谢反应
290 个相关的代谢反应过程信息。
Reactome(81)
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cytoprotection by HMOX1:
BV + TPNH ⟶ BIL + TPN
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cytoprotection by HMOX1:
BIL:ALB + O2.- ⟶ ALB + BV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopachrome ⟶ DHICA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopachrome ⟶ DHICA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopachrome ⟶ DHICA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopachrome ⟶ DHI + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Melanin biosynthesis:
Dopa + Oxygen ⟶ H2O + L-Dopaquinone
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
BioCyc(16)
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(193)
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
GTP + hydroxyl radical ⟶ 8-oxo-GTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
GTP + hydroxyl radical ⟶ 8-oxo-GTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
GTP + hydroxyl radical ⟶ 8-oxo-GTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
GTP + hydroxyl radical ⟶ 8-oxo-GTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- oxidized GTP and dGTP detoxification:
dGTP + hydroxyl radical ⟶ 8-oxo-dGTP + H2O
- 8-oxo-(d)GTP detoxification I:
8-oxo-dGTP + H2O ⟶ 8-oxo-dGMP + H+ + diphosphate
- 8-oxo-(d)GTP detoxification I:
8-oxo-dGTP + H2O ⟶ 8-oxo-dGMP + H+ + diphosphate
- 8-oxo-(d)GTP detoxification I:
8-oxo-dGTP + H2O ⟶ 8-oxo-dGMP + H+ + diphosphate
- 8-oxo-(d)GTP detoxification II:
8-oxo-GTP + H2O ⟶ 8-oxo-GDP + H+ + phosphate
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jikang You, Fei Liu, Yongwu Wang, Chongsen Duan, Lu Zhang, Huishan Li, Junjian Wang, Huacheng Xu. Photo-methanification of aquatic dissolved organic matters with different origins under aerobic conditions: Non-negligible role of hydroxyl radicals.
Water research.
2024 Jun; 256(?):121609. doi:
10.1016/j.watres.2024.121609
. [PMID: 38615601] - Xueyan Gu, Heng Wang, Lei Wang, Kang Zhang, Yuhu Tian, Xiaoya Wang, Guowei Xu, Zhiting Guo, Saad Ahmad, Hanyurwumutima Egide, Jiahui Liu, Jianxi Li, Huub F J Savelkoul, Jingyan Zhang, Xuezhi Wang. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM.
Scientific reports.
2024 04; 14(1):8413. doi:
10.1038/s41598-024-58933-8
. [PMID: 38600137] - Heng Cao, Sheng-Feng Xiong, Li-Long Dong, Zhou-Tong Dai. Study on the Mechanism of Lipid Peroxidation Induced by Carbonate Radicals.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051125
. [PMID: 38474637] - Xinyue Sui, Jichao Wang, Zhiqiang Zhao, Bin Liu, Miaomiao Liu, Min Liu, Cong Shi, Xinjun Feng, Yingxin Fu, Dayong Shi, Shengying Li, Qingsheng Qi, Mo Xian, Guang Zhao. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction.
Communications biology.
2024 Feb; 7(1):199. doi:
10.1038/s42003-024-05903-5
. [PMID: 38368473] - Fan-Li Meng, Xin Zhang, Yi Hu, Guo-Ping Sheng. New Barrier Role of Iron Plaque: Producing Interfacial Hydroxyl Radicals to Degrade Rhizosphere Pollutants.
Environmental science & technology.
2024 Jan; 58(1):795-804. doi:
10.1021/acs.est.3c08132
. [PMID: 38095914] - Xun Zhou, Xiaolang Wu, Rui Wang, Lu Han, Huilin Li, Wei Zhao. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010170
. [PMID: 38203341] - M Shiraiwa, T Fang, J Wei, Psj Lakey, Bch Hwang, K C Edwards, S Kapur, Jem Mena, Y-K Huang, M A Digman, S A Weichenthal, S Nizkorodov, M T Kleinman. Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.
Research report (Health Effects Institute).
2023 Dec; ?(215):1-56. doi:
"
. [PMID: 38420854] - Minyi Huang, Nguyen Thi Hong Nhung, Gjergj Dodbiba, Toyohisa Fujita. Mitigation of arsenic accumulation in rice (Oryza sativa L.) seedlings by oxygen nanobubbles in hydroponic cultures.
Ecotoxicology and environmental safety.
2023 Dec; 268(?):115700. doi:
10.1016/j.ecoenv.2023.115700
. [PMID: 37976934] - Xiao-Jie Wang, Qian Zhou, Yu-Ru Wu, Jing Li, Wei Wang, Zhen-Yu Yu, Ming-Ming Zheng, Yi-Bin Zhou, Kang Liu. Regulation Mechanism of Phenolic Hydroxyl Number on Self-Assembly and Interaction between Edible Dock Protein and Hydrophobic Flavonoids.
Journal of agricultural and food chemistry.
2023 Nov; 71(47):18510-18523. doi:
10.1021/acs.jafc.3c05713
. [PMID: 37971491] - Muhammad Rizwan Haider, Wen-Li Jiang, Jing-Long Han, Ayyaz Mahmood, Ridha Djellabi, Huiling Liu, Muhammad Bilal Asif, Ai-Jie Wang. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H2O2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions.
Environmental science & technology.
2023 Nov; 57(47):18668-18679. doi:
10.1021/acs.est.2c07752
. [PMID: 36730709] - Han Gao, Lei Sun, Jiwei Li, Qilin Zhou, Haijun Xu, Xiao-Nan Ma, Renshi Li, Bo-Yang Yu, Jiangwei Tian. Illumination of Hydroxyl Radical in Kidney Injury and High-Throughput Screening of Natural Protectants Using a Fluorescent/Photoacoustic Probe.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 11; 10(33):e2303926. doi:
10.1002/advs.202303926
. [PMID: 37870188] - Fengying Dai, Kepeng Lv, Bo Zhang, Junqiang Zhao, Shaoteng Wang, Ke Lan, Yiping Zhao, Xiaolei Zhang, Bohong Kan. Overcoming the structure deficiency of nanodrug coated with tannic acid shell through phenolic hydroxyl protection strategy for Alzheimer's disease combination treatment.
Biomaterials advances.
2023 Oct; 154(?):213651. doi:
10.1016/j.bioadv.2023.213651
. [PMID: 37827021] - Suleixin Yang, Yi Wu, Wenzhao Zhong, Ruie Chen, Meilin Wang, Meiwan Chen. GSH/Ph Dual Activatable Crosslinked And Fluorinated Pei for Cancer Gene Therapy Through Endogenous Iron De-Hijacking And in Situ Ros Amplification.
Advanced materials (Deerfield Beach, Fla.).
2023 Sep; ?(?):e2304098. doi:
10.1002/adma.202304098
. [PMID: 37689975] - Wanping Chen, Meilian Zhao, Qiwen Zuo, Mingxing Liu, Xinyu He, Yushan Liu, Zhiguo Wang, Huirong Li, Yuxi Sun, Yunju Zhang. Understanding the insight into the mechanisms and dynamics of the OH-initiated oxidation of CHF2CF2OCHF2 and the subsequent reactions in the presence of NO and O2.
Journal of molecular graphics & modelling.
2023 07; 122(?):108489. doi:
10.1016/j.jmgm.2023.108489
. [PMID: 37084667] - Amr A Essawy, Khaled F El-Massry, Ibrahim Hotan Alsohaimi, A El-Ghorab. Managing Encapsulated Oil Extract of Date Seed Waste for High Hydroxyl Radical Scavenging Assayed via Hybrid Photo-Mediated/Spectrofluorimetric Probing.
Molecules (Basel, Switzerland).
2023 Jul; 28(13):. doi:
10.3390/molecules28135160
. [PMID: 37446822] - Yufeng He, Mingchuan Yang, Lumin Yang, Meng Hao, Fuming Wang, Xiuli Li, Ethan Will Taylor, Xiangchun Zhang, Jinsong Zhang. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin.
Colloids and surfaces. B, Biointerfaces.
2023 Jun; 226(?):113329. doi:
10.1016/j.colsurfb.2023.113329
. [PMID: 37156027] - Ruifang Feng, Wenyu Liang, Yueyue Liu, Yongkang Luo, Yuqing Tan, Hui Hong. Protein oxidation affected the digestibility and modification sites of myofibrillar proteins from bighead carp fillets treated with hydroxyl radicals and endogenous oxidizing system.
Food chemistry.
2023 May; 409(?):135279. doi:
10.1016/j.foodchem.2022.135279
. [PMID: 36603476] - Changxiao Chen, Qi Meng, Zhendong Liu, Sainan Liu, Weifang Tong, Baichao An, Binbin Ding, Ping'an Ma, Jun Lin. Iron oxide-EDTA nanoparticles for chelation-enhanced chemodynamic therapy and ion interference therapy.
Biomaterials science.
2023 May; ?(?):. doi:
10.1039/d3bm00371j
. [PMID: 37159049] - Hexi Yang, Fumin Tai, Tiantian Wang, Xiaofei Zheng, Changhui Ge, Yide Qin, Hanjiang Fu. Hydrogen peroxide and iron ions can modulate lipid peroxidation, apoptosis, and the cell cycle, but do not have a significant effect on DNA double-strand break.
Biochemical and biophysical research communications.
2023 04; 651(?):121-126. doi:
10.1016/j.bbrc.2023.02.023
. [PMID: 36822125] - Fengjiao Zhang, Renjie Zhang, Songgui He, Jingyi Guan, Zhaoxing Feng, Zhenqiang Wu. Formation of free radicals in Chi-aroma Baijiu during aging process with fat pork.
Free radical research.
2023 Apr; 57(4):271-281. doi:
10.1080/10715762.2023.2232095
. [PMID: 37401820] - Elena Kozlova, Viktoria Sergunova, Ekaterina Sherstyukova, Andrey Grechko, Snezhanna Lyapunova, Vladimir Inozemtsev, Aleksandr Kozlov, Olga Gudkova, Aleksandr Chernysh. Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065952
. [PMID: 36983026] - Igor Bosevski, Andreja Žgajnar Gotvajn. Biotreatability Improvement of Antibiotic-Contaminated Waters: High Efficiency of Direct Ozonation in Comparison to Hydroxyl Radical Oxidation.
Acta chimica Slovenica.
2023 Mar; 70(1):65-73. doi:
10.17344/acsi.2022.7793
. [PMID: 37005620] - Yang Zhu, Peng Gong, Jun Wang, Junjie Cheng, Wenyu Wang, Huilan Cai, Rujiang Ao, Hongwei Huang, Meili Yu, Lisen Lin, Xiaoyuan Chen. Amplification of Lipid Peroxidation by Regulating Cell Membrane Unsaturation To Enhance Chemodynamic Therapy.
Angewandte Chemie (International ed. in English).
2023 03; 62(12):e202218407. doi:
10.1002/anie.202218407
. [PMID: 36708200] - Congling Liu, Gong Chen, Hailian Rao, Xun Xiao, Yidan Chen, Cuiling Wu, Fei Bian, Hailun He. Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas sp. JS4-1 Extracellular Protease.
Marine drugs.
2023 Feb; 21(2):. doi:
10.3390/md21020133
. [PMID: 36827174] - Bruna B Segat, Lucas B Menezes, Rodrigo Cervo, Roberta Cargnelutti, Hugo Tolentino, Alexandra Latini, Adolfo Horn, Christiane Fernandes. Scavenging of reactive species probed by EPR and ex-vivo nanomolar reduction of lipid peroxidation of manganese complexes.
Journal of inorganic biochemistry.
2023 02; 239(?):112060. doi:
10.1016/j.jinorgbio.2022.112060
. [PMID: 36402588] - Lucas B Menezes, Bruna B Segat, Hugo Tolentino, Daniele C Pires, Larissa M de M Mattos, Hyan M Hottum, Marcos D Pereira, Alexandra Latini, Adolfo Horn, Christiane Fernandes. ROS scavenging of SOD/CAT mimics probed by EPR and reduction of lipid peroxidation in S. cerevisiae and mouse liver, under severe hydroxyl radical stress condition.
Journal of inorganic biochemistry.
2023 02; 239(?):112062. doi:
10.1016/j.jinorgbio.2022.112062
. [PMID: 36403436] - Jingyang Lu, Nannan Li, Shuqin Li, Wei Liu, Mingyue Li, Min Zhang, Haixia Chen. Biochemical Composition, Antioxidant Activity and Antiproliferative Effects of Different Processed Garlic Products.
Molecules (Basel, Switzerland).
2023 Jan; 28(2):. doi:
10.3390/molecules28020804
. [PMID: 36677862] - Xuhai Zhu, Cong Zhang, Haixia Ma, Fang Lu. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis.
Biomacromolecules.
2022 Dec; 23(12):4985-4994. doi:
10.1021/acs.biomac.2c00609
. [PMID: 36332059] - Yao Zheng, Long Zhang, Zehui Qiu, Zheng Yu, Wenzheng Shi, Xichang Wang. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system.
Food chemistry.
2022 Dec; 396(?):133710. doi:
10.1016/j.foodchem.2022.133710
. [PMID: 35872498] - Anand Ramasamy, K Anandakumar, K Kathiresan. In-vitro antioxidant potential and acetylcholinesterase inhibitory effect of Ficus benghalensis aerial root extract.
African health sciences.
2022 Dec; 22(4):291-299. doi:
10.4314/ahs.v22i4.34
. [PMID: 37092053] - Yaxin Xu, Jun Yan, Yu Zhu, Haoyu Chen, Cuiyan Wu, Xiaohua Zhu, Youyu Zhang, Haitao Li, Meiling Liu, Shouzhuo Yao. Self-Cascade Nanoenzyme of Cupric Oxide Nanoparticles (CuO NPs) Induced in Situ Catalysis Formation of Polyelectrolyte as Template for the Synthesis of Near-Infrared Fluorescent Silver Nanoclusters and the Application in Glutathione Detection and Bioimaging.
Analytical chemistry.
2022 10; 94(42):14642-14651. doi:
10.1021/acs.analchem.2c02832
. [PMID: 36218121] - Chunmei Chen, Yixin Tan, Ting Xu, Yihao Sun, Sheng Zhao, Yi Ouyang, Yan Chen, Liang He, Xiaohong Liu, Hui Liu. Sorafenib-Loaded Copper Peroxide Nanoparticles with Redox Balance Disrupting Capacity for Enhanced Chemodynamic Therapy against Tumor Cells.
Langmuir : the ACS journal of surfaces and colloids.
2022 10; 38(40):12307-12315. doi:
10.1021/acs.langmuir.2c01938
. [PMID: 36154182] - Luchun Wang, Yongqing Tao, Junji Wang, Meng Tian, Shaochi Liu, Tian Quan, Lijuan Yang, Dandan Wang, Xiang Li, Die Gao. A novel hydroxyl-riched covalent organic framework as an advanced adsorbent for the adsorption of anionic azo dyes.
Analytica chimica acta.
2022 Sep; 1227(?):340329. doi:
10.1016/j.aca.2022.340329
. [PMID: 36089328] - Zhi-Qi Ren, Lin-Qian Yu, Hao Wang, Gui-Feng Li, Li-Ge Zhang, Xue-Ning Du, Bao-Cheng Huang, Ren-Cun Jin. Inorganic quantum dots - anammox consortia hybrid for stable nitrogen elimination under high-intensity solar-simulated irradiation.
Water research.
2022 Sep; 223(?):119033. doi:
10.1016/j.watres.2022.119033
. [PMID: 36058096] - Junqi Zhan, Gaoshang Li, Yali Dang, Daodong Pan. Purification and identification of a novel hypotensive and antioxidant peptide from porcine plasma.
Journal of the science of food and agriculture.
2022 Aug; 102(11):4933-4941. doi:
10.1002/jsfa.11860
. [PMID: 35278236] - Matthew Rosi, Brandon Russell, Line G Kristensen, Erik R Farquhar, Rohit Jain, Donald Abel, Michael Sullivan, Shawn M Costello, Maria Agustina Dominguez-Martin, Yan Chen, Susan Marqusee, Christopher J Petzold, Cheryl A Kerfeld, Daniel P DePonte, Farid Farahmand, Sayan Gupta, Corie Y Ralston. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins.
Communications biology.
2022 08; 5(1):866. doi:
10.1038/s42003-022-03775-1
. [PMID: 36008591] - Monali Priyadarshini, Indrasis Das, Makarand M Ghangrekar, Lee Blaney. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies.
Journal of environmental management.
2022 Aug; 316(?):115295. doi:
10.1016/j.jenvman.2022.115295
. [PMID: 35597211] - Xiaona Zhai, Weida Zhang, Haisheng Pei, Guogang Chen. Structure and physicochemical properties of polysaccharides from Poria cocos extracted by deep eutectic solvent.
Glycoconjugate journal.
2022 08; 39(4):475-486. doi:
10.1007/s10719-022-10073-9
. [PMID: 35840804] - Walid Lamine, Frédéric Guégan, François Jérôme, Gilles Frapper. Theoretical exploration of the reactivity of cellulose models under non-thermal plasma conditions-mechanistic and NBO studies.
Journal of computational chemistry.
2022 Jul; 43(20):1334-1341. doi:
10.1002/jcc.26934
. [PMID: 35670154] - Daniele Sanna, Angela Fadda. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR).
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144560
. [PMID: 35889433] - Qi Lu, Yongze Liu, Benhang Li, Li Feng, Ziwen Du, Liqiu Zhang. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals.
The Science of the total environment.
2022 Jul; 828(?):153984. doi:
10.1016/j.scitotenv.2022.153984
. [PMID: 35202700] - Yufan Chen, Huong Chi Vu, Christopher J Miller, Shikha Garg, Dai Pan, T David Waite. Comparative Experimental and Computational Studies of Hydroxyl and Sulfate Radical-Mediated Degradation of Simple and Complex Organic Substrates.
Environmental science & technology.
2022 06; 56(12):8819-8832. doi:
10.1021/acs.est.2c00686
. [PMID: 35549159] - B Haridevamuthu, Tamilvelan Manjunathan, Ajay Guru, Rajendran Saravana Kumar, Rajakrishnan Rajagopal, Palaniselvam Kuppusamy, Annie Juliet, Pushparathinam Gopinath, Jesu Arockiaraj. Hydroxyl containing benzo[b]thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle.
Life sciences.
2022 Jun; 298(?):120507. doi:
10.1016/j.lfs.2022.120507
. [PMID: 35358593] - Junghyun Lim, Eun Jeong Hong, Seong Bong Kim, Seungmin Ryu. The Effect of Gap Distance between a Pin and Water Surface on the Inactivation of Escherichia coli Using a Pin-to-Water Plasma.
International journal of molecular sciences.
2022 May; 23(10):. doi:
10.3390/ijms23105423
. [PMID: 35628234] - Lei Wang, Boqiang Li, Dionysios D Dionysiou, Baiyang Chen, Jie Yang, Juan Li. Overlooked Formation of H2O2 during the Hydroxyl Radical-Scavenging Process When Using Alcohols as Scavengers.
Environmental science & technology.
2022 03; 56(6):3386-3396. doi:
10.1021/acs.est.1c03796
. [PMID: 35230098] - Xiaokan Yu, Weisheng Zhu, Wenao Ouyang, Xiaojia Zhang, Hao Qiu, Zhijun Zhang, Bengang Xing. Protein-Mediated Fluorescence Resonance Energy Transfer (P-FRET) Probe: Fabrication and Hydroxyl Radical Detection.
Photochemistry and photobiology.
2022 03; 98(2):371-377. doi:
10.1111/php.13595
. [PMID: 35064566] - Kui Yang, Xingwei Feng, Hui Lin, Jiale Xu, Cao Yang, Juan Du, Dengmiao Cheng, Sihao Lv, Zhifeng Yang. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation.
Journal of hazardous materials.
2022 02; 423(Pt B):127239. doi:
10.1016/j.jhazmat.2021.127239
. [PMID: 34844357] - Chuan-Hai Tu, Xue-Er Qi, Shan-Shan Shui, Hui-Min Lin, Soottawat Benjakul, Bin Zhang. Investigation of the changes in lipid profiles induced by hydroxyl radicals in whiteleg shrimp (Litopenaeus vannamei) muscle using LC/MS-based lipidomics analysis.
Food chemistry.
2022 Feb; 369(?):130925. doi:
10.1016/j.foodchem.2021.130925
. [PMID: 34455329] - Qianchun Zhang, Xiaolan Zhang, Bingnian Yang, Shan Liu, Ming Wen, Linchun Bao, Li Jiang. Development of a highly efficient in-tube solid-phase microextraction system coupled with UHPLC-MS/MS for analyzing trace hydroxyl polycyclic aromatic hydrocarbons in biological samples.
Journal of separation science.
2022 Feb; 45(4):919-928. doi:
10.1002/jssc.202100751
. [PMID: 34923746] - Aurélie Marion, Julien Morin, Elena Ormeño, Sylvie Dupouyet, Barbara D'Anna, Séverine Boiry, Henri Wortham. Nitrous acid production and uptake by Zea mays plants in growth chambers in the presence of nitrogen dioxide.
The Science of the total environment.
2022 Feb; 806(Pt 2):150696. doi:
10.1016/j.scitotenv.2021.150696
. [PMID: 34597576] - Shweta Sinha, Kuldeep Singh, Akash Ved, Syed Misbahul Hasan, Samar Mujeeb. Therapeutic Journey and Recent Advances in the Synthesis of Coumarin Derivatives.
Mini reviews in medicinal chemistry.
2022; 22(9):1314-1330. doi:
10.2174/1389557521666211116120823
. [PMID: 34784861] - You-Wei Ji, Gui-Wei Rao, Guang-Fa Xie. Ultrasound-assisted aqueous two-phase extraction of total flavonoids from Tremella fuciformis and antioxidant activity of extracted flavonoids.
Preparative biochemistry & biotechnology.
2022; 52(9):1060-1068. doi:
10.1080/10826068.2022.2028636
. [PMID: 35098874] - Ruiqing He, Jie Zang, Yuge Zhao, Ying Liu, Shuangrong Ruan, Xiao Zheng, Gaowei Chong, Dailin Xu, Yan Yang, Yushan Yang, Tingting Zhang, Jingjing Gu, Haiqing Dong, Yongyong Li. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition.
Journal of nanobiotechnology.
2021 Dec; 19(1):426. doi:
10.1186/s12951-021-01169-9
. [PMID: 34922541] - Efraím A Serna-Galvis, John F Guateque-Londoño, Javier Silva-Agredo, Jazmín Porras, Yenny Ávila-Torres, Ricardo A Torres-Palma. Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways.
Ultrasonics sonochemistry.
2021 Dec; 80(?):105814. doi:
10.1016/j.ultsonch.2021.105814
. [PMID: 34763213] - Heesu Kim, Dong Gun Lee. Contribution of SOS genes to H2O2-induced apoptosis-like death in Escherichia coli.
Current genetics.
2021 Dec; 67(6):969-980. doi:
10.1007/s00294-021-01204-0
. [PMID: 34435216] - Can Wang, Zheng Wang, Binglin Zeng, Meiqing Zheng, Nao Xiao, Zhongwei Zhao. Fenton-like reaction of the iron(II)-histidine complex generates hydroxyl radicals: implications for oxidative stress and Alzheimer's disease.
Chemical communications (Cambridge, England).
2021 Nov; 57(92):12293-12296. doi:
10.1039/d1cc05000a
. [PMID: 34734220] - P O Maksimchuk, K O Hubenko, V V Seminko, V L Karbivskii, A S Tkachenko, A I Onishchenko, V Yu Prokopyuk, S L Yefimova. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu.
Nanotechnology.
2021 Nov; 33(5):. doi:
10.1088/1361-6528/ac31e5
. [PMID: 34673550] - Weier Bao, Ming Liu, Jiaqi Meng, Siyuan Liu, Shuang Wang, Rongrong Jia, Yugang Wang, Guanghui Ma, Wei Wei, Zhiyuan Tian. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload.
Nature communications.
2021 11; 12(1):6399. doi:
10.1038/s41467-021-26655-4
. [PMID: 34737274] - Shiyang Zhou, Gangliang Huang, Guangying Chen. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam.
Food chemistry.
2021 Nov; 361(?):130089. doi:
10.1016/j.foodchem.2021.130089
. [PMID: 34029907] - Lifang Chen, Shuohui Xing, Yanli Lei, Qiaoshu Chen, Zhen Zou, Ke Quan, Zhihe Qing, Juewen Liu, Ronghua Yang. A Glucose-Powered Activatable Nanozyme Breaking pH and H2 O2 Limitations for Treating Diabetic Infections.
Angewandte Chemie (International ed. in English).
2021 10; 60(44):23534-23539. doi:
10.1002/anie.202107712
. [PMID: 34378279] - Yuting Li, Yuhan Yang, Zhijun Huang, Zewei Luo, Cheng Qian, Yinjun Li, Yixiang Duan. Preparation of low molecular chitosan by microwave-induced plasma desorption/ionization technology.
International journal of biological macromolecules.
2021 Sep; 187(?):441-450. doi:
10.1016/j.ijbiomac.2021.07.122
. [PMID: 34324902] - Yibo Zhou, Hao Dong, Zhengxuan Gu, Sheng Yang, Minzhi Ouyang, Zhihe Qing, Xiaofei Ma, Shan Hu, JunBin Li, Ronghua Yang. Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage.
Analytical chemistry.
2021 09; 93(38):12944-12953. doi:
10.1021/acs.analchem.1c02412
. [PMID: 34523923] - Jing Hu, Hanjiao Chen, Xiaoming Jiang, Xiandeng Hou. Photochemical Vapor Generation of Halides in Organic-Acid-Free Media: Mechanism Study and Analysis of Water Samples.
Analytical chemistry.
2021 08; 93(32):11151-11158. doi:
10.1021/acs.analchem.1c01639
. [PMID: 34346211] - Dongmei Zhang, Chu Gong, Jie Wang, Dong Xing, Lingling Zhao, Danyang Li, Xinxing Zhang. Unravelling Melatonin's Varied Antioxidizing Protection of Membrane Lipids Determined by its Spatial Distribution.
The journal of physical chemistry letters.
2021 Aug; 12(31):7387-7393. doi:
10.1021/acs.jpclett.1c01965
. [PMID: 34328330] - Liying Wang, Mengting Ma, Zhipeng Yu, Shuang-Kui Du. Preparation and identification of antioxidant peptides from cottonseed proteins.
Food chemistry.
2021 Aug; 352(?):129399. doi:
10.1016/j.foodchem.2021.129399
. [PMID: 33662918] - Marta Guedes, Sara F Vieira, Rui L Reis, Helena Ferreira, Nuno M Neves. Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Aug; 140(?):111680. doi:
10.1016/j.biopha.2021.111680
. [PMID: 34020247] - Anna-Maria Barciszewska. Elucidating of oxidative distress in COVID-19 and methods of its prevention.
Chemico-biological interactions.
2021 Aug; 344(?):109501. doi:
10.1016/j.cbi.2021.109501
. [PMID: 33974898] - Stefi V Raju, Arnab Mukherjee, Purabi Sarkar, Praveen Kumar Issac, Christy Lite, Bilal Ahmad Paray, Mohammad K Al-Sadoon, Abdul Rahman Al-Mfarij, Jesu Arockiaraj. RM12 similar to substance P from tachykinin of freshwater murrel Channa striatus influence intracellular ROS in vitro fish erythrocytes and developmental toxicity and antioxidant enzymes in vivo zebrafish embryo.
Fish physiology and biochemistry.
2021 Aug; 47(4):1073-1085. doi:
10.1007/s10695-021-00950-9
. [PMID: 34021418] - Yasumasa Okazaki, Hiromasa Tanaka, Ken-Ichiro Matsumoto, Masaru Hori, Shinya Toyokuni. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide.
Archives of biochemistry and biophysics.
2021 07; 705(?):108901. doi:
10.1016/j.abb.2021.108901
. [PMID: 33964248] - Scot R Weinberger, Emily E Chea, Joshua S Sharp, Sandeep K Misra. Laser-free Hydroxyl Radical Protein Footprinting to Perform Higher Order Structural Analysis of Proteins.
Journal of visualized experiments : JoVE.
2021 06; ?(172):. doi:
10.3791/61861
. [PMID: 34152327] - Joaquin R Domínguez, Teresa González, Sergio Correia, Eva M Domínguez. Sonochemical degradation of neonicotinoid pesticides in natural surface waters. Influence of operational and environmental conditions.
Environmental research.
2021 06; 197(?):111021. doi:
10.1016/j.envres.2021.111021
. [PMID: 33774014] - Guiju Xu, Longfei Hou, Baoyu Li, Xiaoli Wang, Lu Liu, Na Li, Ming-Lin Wang, Ru-Song Zhao. Facile preparation of hydroxyl bearing covalent organic frameworks for analysis of phenoxy carboxylic acid pesticide residue in plant-derived food.
Food chemistry.
2021 May; 345(?):128749. doi:
10.1016/j.foodchem.2020.128749
. [PMID: 33302110] - Tian Fang, Xiaoqian Zhang, Shanshan Hu, Yanyan Yu, Xue Sun, Nianjun Xu. Enzymatic Degradation of Gracilariopsis lemaneiformis Polysaccharide and the Antioxidant Activity of Its Degradation Products.
Marine drugs.
2021 May; 19(5):. doi:
10.3390/md19050270
. [PMID: 34066101] - Ioanna Kostopoulou, Andromachi Tzani, Nestor-Ioannis Polyzos, Maria-Anna Karadendrou, Eftichia Kritsi, Eleni Pontiki, Thalia Liargkova, Dimitra Hadjipavlou-Litina, Panagiotis Zoumpoulakis, Anastasia Detsi. Exploring the 2'-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents.
Molecules (Basel, Switzerland).
2021 May; 26(9):. doi:
10.3390/molecules26092777
. [PMID: 34066803] - Ateeq Ur Rehman, Faiza Bashir, Ferhan Ayaydin, Zoltán Kóta, Tibor Páli, Imre Vass. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids.
Physiologia plantarum.
2021 May; 172(1):7-18. doi:
10.1111/ppl.13265
. [PMID: 33161571] - Robin Wünsch, Carina Mayer, Julia Plattner, Fabienne Eugster, Richard Wülser, Jens Gebhardt, Uwe Hübner, Silvio Canonica, Thomas Wintgens, Urs von Gunten. Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H2O2 treatment.
Water research.
2021 May; 195(?):116940. doi:
10.1016/j.watres.2021.116940
. [PMID: 33735627] - Michal Nowak, Wieslaw Tryniszewski, Agata Sarniak, Anna Wlodarczyk, Piotr J Nowak, Dariusz Nowak. Effect of Physiological Concentrations of Vitamin C on the Inhibitation of Hydroxyl Radical Induced Light Emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2 Systems In Vitro.
Molecules (Basel, Switzerland).
2021 Apr; 26(7):. doi:
10.3390/molecules26071993
. [PMID: 33915907] - Arun Gokul, Mogamat Fahiem Carelse, Lee-Ann Niekerk, Ashwil Klein, Ndiko Ludidi, David Mendoza-Cozatl, Marshall Keyster. Exogenous 3,3'-Diindolylmethane Improves Vanadium Stress Tolerance in Brassica napus Seedling Shoots by Modulating Antioxidant Enzyme Activities.
Biomolecules.
2021 03; 11(3):. doi:
10.3390/biom11030436
. [PMID: 33809550] - Carolina Merino, Francisco Matus, Yakov Kuzyakov, Jens Dyckmans, Svenja Stock, Michaela A Dippold. Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions.
The Science of the total environment.
2021 Mar; 760(?):143397. doi:
10.1016/j.scitotenv.2020.143397
. [PMID: 33199010] - C M Sabbir Ahmed, Biplab Chandra Paul, Yumeng Cui, Alexander L Frie, Abigail Burr, Rohan Kamath, Jin Y Chen, Tara M Nordgren, Roya Bahreini, Ying-Hsuan Lin. Integrative Analysis of lncRNA-mRNA Coexpression in Human Lung Epithelial Cells Exposed to Dimethyl Selenide-Derived Secondary Organic Aerosols.
Chemical research in toxicology.
2021 03; 34(3):892-900. doi:
10.1021/acs.chemrestox.0c00516
. [PMID: 33656867] - Haiyan Li, Yunxiang Ma, Xudong Gao, Guopeng Chen, Zhipeng Wang. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters.
Carbohydrate polymers.
2021 Mar; 256(?):117428. doi:
10.1016/j.carbpol.2020.117428
. [PMID: 33483017] - Shihan Wang, Yuanshuai Gan, Xinxin Mao, Hong Kan, Nan Li, Changli Zhang, Zhihan Wang, Yongsheng Wang. Antioxidant Activity Evaluation of Oviductus Ranae Protein Hydrolyzed by Different Proteases.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061625
. [PMID: 33804057] - Chanikan Sonklin, Adeola M Alashi, Natta Laohakunjit, Rotimi E Aluko. Functional Characterization of Mung Bean Meal Protein-Derived Antioxidant Peptides.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061515
. [PMID: 33802127] - Le Dong, Ruyu Li, Liqiu Wang, Xifa Lan, Haotian Sun, Yu Zhao, Longgang Wang. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose.
International journal of biological macromolecules.
2021 Mar; 172(?):289-298. doi:
10.1016/j.ijbiomac.2021.01.049
. [PMID: 33450341] - Shibing Chen, Sining Zheng, Shengjie Jiang, Hongyu Guo, Fafu Yang. A simple 'turn-on' fluorescence sensor for salicylaldehyde skeleton based on switch of PET-AIE effect.
Analytical and bioanalytical chemistry.
2021 Mar; 413(7):1955-1966. doi:
10.1007/s00216-021-03165-2
. [PMID: 33481048] - Biswajita Pradhan, Srimanta Patra, Chhandashree Behera, Rabindra Nayak, Bimal Prasad Jit, Andrea Ragusa, Mrutyunjay Jena. Preliminary Investigation of the Antioxidant, Anti-Diabetic, and Anti-Inflammatory Activity of Enteromorpha intestinalis Extracts.
Molecules (Basel, Switzerland).
2021 Feb; 26(4):. doi:
10.3390/molecules26041171
. [PMID: 33671811] - Beatriz Chamorro, David García-Vieira, Daniel Diez-Iriepa, Estíbaliz Garagarza, Mourad Chioua, Dimitra Hadjipavlou-Litina, Francisco López-Muñoz, José Marco-Contelles, María Jesús Oset-Gasque. Synthesis, Neuroprotection, and Antioxidant Activity of 1,1'-Biphenylnitrones as α-Phenyl-N-tert-butylnitrone Analogues in In Vitro Ischemia Models.
Molecules (Basel, Switzerland).
2021 Feb; 26(4):. doi:
10.3390/molecules26041127
. [PMID: 33672652] - Muhammad Saiful Islam Khan, Na Ri Lee, Jaehwan Ahn, Ji Young Kim, Jong Hoon Kim, Ki Hyun Kwon, Yun-Ji Kim. Degradation of different pesticides in water by microplasma: the roles of individual radicals and degradation pathways.
Environmental science and pollution research international.
2021 Feb; 28(7):8296-8309. doi:
10.1007/s11356-020-11127-x
. [PMID: 33058076] - Aditya Kumar, Ankush Prasad, Michaela Sedlářová, Ravindra Kale, Laurie K Frankel, Larry Sallans, Terry M Bricker, Pavel Pospíšil. Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II.
Proceedings of the National Academy of Sciences of the United States of America.
2021 01; 118(4):. doi:
10.1073/pnas.2019246118
. [PMID: 33479170] - Garima, Shlok Jindal, Shefali Garg, Ishita Matai, Gopinath Packirisamy, Abhay Sachdev. Dual-emission copper nanoclusters-based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species.
Mikrochimica acta.
2021 01; 188(1):13. doi:
10.1007/s00604-020-04683-z
. [PMID: 33389152] - Tetsuo Adachi. [Molecular Mechanisms Underlying Cellular Responses to the Loading of Non-thermal Atmospheric Pressure Plasma-activated Solutions].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2021; 141(10):1185-1194. doi:
10.1248/yakushi.21-00134
. [PMID: 34602515] - Dandan Ding, Yushuo Feng, Ruixue Qin, Shi Li, Lei Chen, Jinpeng Jing, Chutong Zhang, Wenjing Sun, Yimin Li, Xiaoyuan Chen, Hongmin Chen. Mn3+-rich oxide/persistent luminescence nanoparticles achieve light-free generation of singlet oxygen and hydroxyl radicals for responsive imaging and tumor treatment.
Theranostics.
2021; 11(15):7439-7449. doi:
10.7150/thno.62437
. [PMID: 34158859] - Dennis Brown, Dorsa Moezzi, Yifei Dong, Marcus Koch, V Wee Yong. Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2021 01; 18(1):387-400. doi:
10.1007/s13311-020-01002-5
. [PMID: 33410109] - Shoko Okazaki, Ayako Hirata, Yusuke Shogomori, Megumi Takemoto, Takuro Nagata, Eriko Hayashida, Keizo Takeshita. Radical reactions induced by ketoprofen in phospholipid membranes under ultraviolet light irradiation.
Journal of photochemistry and photobiology. B, Biology.
2021 Jan; 214(?):112090. doi:
10.1016/j.jphotobiol.2020.112090
. [PMID: 33302245] - Purabi Sarkar, Christy Lite, Praveen Kumar, Mukesh Pasupuleti, N T Saraswathi, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Aziz Arshad, Jesu Arockiaraj. TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model.
International journal of biological macromolecules.
2021 Jan; 166(?):641-653. doi:
10.1016/j.ijbiomac.2020.10.222
. [PMID: 33137391] - Xu Yang, Hai-Yu Ji, Ying-Ying Feng, Juan Yu, An-Jun Liu. A Novel Optimization of Water-Soluble Compound Polysaccharides from Chinese Herbal Medicines by Quantitative Theory and Study on Its Characterization and Antioxidant Activities.
Chemistry & biodiversity.
2021 Jan; 18(1):e2000688. doi:
10.1002/cbdv.202000688
. [PMID: 33258537] - Annachiara Berardinelli, Abdessalem Hamrouni, Sandra Dirè, Riccardo Ceccato, Giovanni Camera-Roda, Luigi Ragni, Leonardo Palmisano, Francesco Parrino. Features and application of coupled cold plasma and photocatalysis processes for decontamination of water.
Chemosphere.
2021 Jan; 262(?):128336. doi:
10.1016/j.chemosphere.2020.128336
. [PMID: 33182148] - Md Mostafa Kamal, Carlos Erazo, Karen K Tanino, Yukio Kawamura, Jun Kasuga, Bernard Laarveld, Andrew Olkowski, Matsuo Uemura. A single seed treatment mediated through reactive oxygen species increases germination, growth performance, and abiotic stress tolerance in Arabidopsis and rice.
Bioscience, biotechnology, and biochemistry.
2020 Dec; 84(12):2597-2608. doi:
10.1080/09168451.2020.1808444
. [PMID: 32856556] - Yongchun Liu, Shuangying Ni, Tao Jiang, Shubin Xing, Yusheng Zhang, Xiaolei Bao, Zeming Feng, Xiaolong Fan, Liang Zhang, Haibo Feng. Influence of Chinese New Year overlapping COVID-19 lockdown on HONO sources in Shijiazhuang.
The Science of the total environment.
2020 Nov; 745(?):141025. doi:
10.1016/j.scitotenv.2020.141025
. [PMID: 32738691]