Retusin_(flavonol) (BioDeep_00000396817)
Secondary id: BioDeep_00000182914, BioDeep_00000380401
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C19H18O7 (358.1052)
中文名称: 栎精-3,7,3',4'-四甲醚, 栎精-3,7,3,4-四甲醚
谱图信息:
最多检出来源 Viridiplantae(plant) 81.78%
分子结构信息
SMILES: C1(OC)=CC2OC(C3C=C(OC)C(OC)=CC=3)=C(OC)C(=O)C=2C(O)=C1
InChI: InChI=1S/C19H18O7/c1-22-11-8-12(20)16-15(9-11)26-18(19(25-4)17(16)21)10-5-6-13(23-2)14(7-10)24-3/h5-9,20H,1-4H3
描述信息
5-hydroxy-3,3,4,7-tetramethoxyflavone is a monohydroxyflavone that is 5-hydroxyflavone which is substituted by methoxy groups at positions 3,3,4 and 7. It has a role as a plant metabolite. It is a tetramethoxyflavone, a member of 3-methoxyflavones and a monohydroxyflavone. It is a conjugate acid of a 5-hydroxy-3,3,4,7-tetramethoxyflavone(1-).
Retusin is a natural product found in Larrea cuneifolia, Solanum pubescens, and other organisms with data available.
A monohydroxyflavone that is 5-hydroxyflavone which is substituted by methoxy groups at positions 3,3,4 and 7.
Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
Retusin (Quercetin-3,3',4',7-tetramethylether), a natural compound isolated from the leaves of Talinum triangulare, possesses antiviral and anti-inflammatory activities[1].
同义名列表
46 个代谢物同义名
4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-; 2-(3,4-Dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4H-1-benzopyran-4-one; 2-(3,4-Dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4H-chromen-4-one #; 4H-1-Benzopyran-4-one,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-; 2-(3,4-Dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4H-chromen-4-one; 2-(3,4-Dimethoxy-phenyl)-5-hydroxy-3,7-dimethoxy-chromen-4-one; 2-(3,4-Dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4-benzopyrone; 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-chromen-4-one; 2-(3,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxychromen-4-one; Flavone, 5-hydroxy-3,3,4,7-tetramethoxy-; HYDROXY-3,3,4,7-TETRAMETHOXYFLAVONE, 5-; 5-hydroxy-3,7,3,4-tetramethoxyflavone; 5-Hydroxy-3,3,4,7-tetramethoxyflavone; Quercetin 3,3,4,7-O-tetramethyl ether; Quercetin 3,7,3,4-tetramethyl ether; Quercetin-3,7,3,4-tetramethyl ether; quercetin 3,3,4,7-tetramethyl ether; quercitin-3,7,3,4-tetramethyl ether; Quercetin-3,3,4,7-tetramethylether; Quercetin 3,3,4,7-tetramethylether; Quercetin-3,7,3,4-tetramethylether; Quercetin 3,7,3,4-tetramethylether; Quercetin-3,3,4,7-etramethylether; Quercetin 3,3,4-tetramethyl ether; 3,7,3,4-tetra-O-methylquercetin; 3,3,4,7-TETRA-O-METHYLQUERCETIN; Quercetin, 3,7,3,4-tetramethyl; 3,3,4,7-O-tetramethylquercetin; 3,3,4,7-Tetramethylquercetin; 3,7,3,4-tetramethylquercetin; Flavone,3,4,7-tetramethoxy-; Quercetin tetramethylether; Retusine (Ariocarpus); Retusin (Ariocarpus); Retusin(Ariocarpus); Retusine (VAN); MEGxp0_001881; Retusin (VAN); ACon1_000513; NCI60_003907; NCI60_005562; NCI60_003909; NCI60_003908; Retusin; KY73; Quercetin-?3,?3',?4',?7-?tetramethylether
数据库引用编号
10 个数据库交叉引用编号
- ChEBI: CHEBI:144861
- PubChem: 5352005
- ChEMBL: CHEMBL77966
- Wikipedia: Retusin_(flavonol)
- LipidMAPS: LMPK12112770
- MeSH: 5-hydroxy-3,7,3,4-tetramethoxyflavone
- ChemIDplus: 0001245154
- CAS: 1245-15-4
- medchemexpress: HY-N6829
- MetaboLights: MTBLC144861
分类词条
相关代谢途径
Reactome(0)
BioCyc(2)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
3 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Emanuel T Mahambo, Colores Uwamariya, Masum Miah, Leandro da Costa Clementino, Luis Carlos Salazar Alvarez, Gabriela Paula Di Santo Meztler, Edward Trybala, Joanna Said, Lianne H E Wieske, Jas S Ward, Kari Rissanen, Joan J E Munissi, Fabio T M Costa, Per Sunnerhagen, Tomas Bergström, Stephen S Nyandoro, Mate Erdelyi. Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae.
Journal of natural products.
2023 02; 86(2):380-389. doi:
10.1021/acs.jnatprod.2c01007
. [PMID: 36749598] - Noriyuki Natsume, Aki Yamano, Akio Watanabe, Takayuki Yonezawa, Je-Tae Woo, Tohru Yamakuni, Toshiaki Teruya. Effect of methoxyflavones contained in Kaempferia parviflora on CRE-mediated transcription in PC12D cells.
Bioorganic & medicinal chemistry letters.
2020 12; 30(23):127606. doi:
10.1016/j.bmcl.2020.127606
. [PMID: 33038547] - Satoru Horigome, Izumi Yoshida, Shihomi Ito, Shuichi Inohana, Kei Fushimi, Takeshi Nagai, Akihiro Yamaguchi, Kazuhiro Fujita, Toshiya Satoyama, Shin-Ichi Katsuda, Shinobu Suzuki, Masatoshi Watai, Naoto Hirose, Takahiro Mitsue, Hitoshi Shirakawa, Michio Komai. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.
European journal of nutrition.
2017 Apr; 56(3):949-964. doi:
10.1007/s00394-015-1141-5
. [PMID: 26704713] - Catheleeya Mekjaruskul, Michael Jay, Bungorn Sripanidkulchai. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Dec; 40(12):2342-53. doi:
10.1124/dmd.112.047142
. [PMID: 22961680] - Hyung-In Moon, Sang-Buem Cho, Jai-Heon Lee, Young-Choon Lee, Jun-Hyeong Lee, Chi-Ho Lee, Soo-Ki Kim. Protective effects of methoxyflavone derivatives from black galingale against glutamate induced neurotoxicity in primary cultured rat cortical cells.
Phytotherapy research : PTR.
2011 Aug; 25(8):1215-7. doi:
10.1002/ptr.3390
. [PMID: 21305633] - Chun-ying Xie, Le-wei Lin. [Study on the chemical constituents of Pithecellobium clypearia].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2011 Jul; 34(7):1060-2. doi:
. [PMID: 22066399]
- Yunbao Liu, Muraleedharan G Nair. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.
Journal of natural products.
2010 Jul; 73(7):1193-5. doi:
10.1021/np1000945
. [PMID: 20565070] - Chutha Sae-wong, Pimpimon Tansakul, Supinya Tewtrakul. Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals.
Journal of ethnopharmacology.
2009 Jul; 124(3):576-80. doi:
10.1016/j.jep.2009.04.059
. [PMID: 19439175] - Supinya Tewtrakul, Sanan Subhadhirasakul. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells.
Journal of ethnopharmacology.
2008 Oct; 120(1):81-4. doi:
10.1016/j.jep.2008.07.033
. [PMID: 18725283] - Supinya Tewtrakul, Sanan Subhadhirasakul, Sopa Kummee. Anti-allergic activity of compounds from Kaempferia parviflora.
Journal of ethnopharmacology.
2008 Feb; 116(1):191-3. doi:
10.1016/j.jep.2007.10.042
. [PMID: 18077118] - Tamara Stipcevic, Jasenka Piljac, Dirk Vanden Berghe. Effect of different flavonoids on collagen synthesis in human fibroblasts.
Plant foods for human nutrition (Dordrecht, Netherlands).
2006 Mar; 61(1):29-34. doi:
10.1007/s11130-006-0006-8
. [PMID: 16642409] - K Cimanga, L Ying, T De Bruyne, S Apers, P Cos, N Hermans, P Bakana, L Tona, K Kambu, D T Kalenda, L Pieters, D Vanden Berghe, A J Vlietinck. Radical scavenging and xanthine oxidase inhibitory activity of phenolic compounds from Bridelia ferruginea stem bark.
The Journal of pharmacy and pharmacology.
2001 May; 53(5):757-61. doi:
10.1211/0022357011775893
. [PMID: 11370716] - M Morimoto, S Kumeda, K Komai. Insect antifeedant flavonoids from Gnaphalium affine D. Don.
Journal of agricultural and food chemistry.
2000 May; 48(5):1888-91. doi:
10.1021/jf990282q
. [PMID: 10820110]