(E)-3,5,4-Trimethoxystilbene (BioDeep_00000396309)

 

Secondary id: BioDeep_00000231763

PANOMIX_OTCML-2023 Chemicals and Drugs


代谢物信息卡片


Benzene,1,3-dimethoxy-5-[(1E)-2-(4-methoxyphenyl)ethenyl]-

化学式: C17H18O3 (270.1255878)
中文名称: (E)-3,5,4’-三甲氧基芪, 白藜芦醇三甲醚
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 1.11%

Reviewed

Last reviewed on 2024-08-21.

Cite this Page

(E)-3,5,4-Trimethoxystilbene. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/(e)-3,5,4-trimethoxystilbene (retrieved 2024-11-24) (BioDeep RN: BioDeep_00000396309). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: COC1=CC=C(/C=C/C2=CC(OC)=CC(OC)=C2)C=C1
InChI: InChI=1S/C17H18O3/c1-18-15-8-6-13(7-9-15)4-5-14-10-16(19-2)12-17(11-14)20-3/h4-12H,1-3H3/b5-4+

描述信息

(E)-3,5,4-Trimethoxystilbene is a natural product found in Dalea versicolor, Streptomyces avermitilis, and other organisms with data available.
Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1]
Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1]

同义名列表

31 个代谢物同义名

Benzene,1,3-dimethoxy-5-[(1E)-2-(4-methoxyphenyl)ethenyl]-; Benzene, 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]-; trans-1-(3,5-Dimethoxyphenyl)-2-(4-methoxyphenyl)ethylene; 1,3-Dimethoxy-5-[(1E)-2-(4-methoxyphenyl)ethenyl]benzene; 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene; 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)vinyl]benzene; 5-[2-(4-Methoxyphenyl)Ethenyl]-1,3-Dimethoxy Benzene; (E)-1,3-Dimethoxy-5-(4-methoxystyryl)benzene; 1,3-Dimethoxy-5-(4-methoxystyryl)benzene; 3,4`,5-Trimethoxy-trans-stilbene; 3,4,5-trimethoxy-trans-stilbene; trans-3,4,5-trimethoxystilbene; trans-3,5,4-trimethoxystilbene; 3,5,4-tri-O-methyl-resveratrol; 3,5,4-tri-O-methylresveratrol; (E)-3,5,40-Trimethoxystilbene; trans-Stilbene Derivative, 4a; E-Resveratrol trimethyl ether; 3,4,5-tri-O-methylresveratrol; (E)-3,5,4-Trimethoxystilbene; (Z)-3,5,4-TRIMETHOXYSTILBENE; 8E-3,4,5-trimethoxystilbene; Resveratrol trimethyl ether; trans-Trimethoxyresveratrol; 3,5,4-trimethoxystilbene; 3,4,5-trimethoxystilbene; Tri-O-methylresveratrol; TRISMETHOXYRESVERATROL; TRIMETHOXYSTILBENE; MR-3; trans-trismethoxy Resveratrol



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Rubén Cebrián, Qian Li, Pablo Peñalver, Efres Belmonte-Reche, María Andrés-Bilbao, Ricardo Lucas, María Violante de Paz, Oscar P Kuipers, Juan Carlos Morales. Chemically Tuning Resveratrol for the Effective Killing of Gram-Positive Pathogens. Journal of natural products. 2022 06; 85(6):1459-1473. doi: 10.1021/acs.jnatprod.1c01107. [PMID: 35621995]
  • Zhi-Mei Liao, An-Na Li, Yan Cai, Jun-Jun Chen, Yao Xu, Li-Hua Sui, Jian-Ling Wang, Ping Jin, Kuan-Song Wang, Zhi-Chun Yang. Skip participates in formation and lipid metabolism of beige adipose and might mediate the effects of SIRT1 activator BTM-0512 on beige remodeling. Biochemical and biophysical research communications. 2021 01; 537(?):109-117. doi: 10.1016/j.bbrc.2020.12.058. [PMID: 33388413]
  • Ming Hong, Jinke Li, Siying Li, Mohammed M Almutairi. Resveratrol Derivative, Trans-3, 5, 4'-Trimethoxystilbene, Prevents the Developing of Atherosclerotic Lesions and Attenuates Cholesterol Accumulation in Macrophage Foam Cells. Molecular nutrition & food research. 2020 03; 64(6):e1901115. doi: 10.1002/mnfr.201901115. [PMID: 31965713]
  • Syuhei Nakao, Miyuki Mabuchi, Shenglan Wang, Yoko Kogure, Tadashi Shimizu, Koichi Noguchi, Akito Tanaka, Yi Dai. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor. Bioorganic & medicinal chemistry letters. 2017 07; 27(14):3167-3172. doi: 10.1016/j.bmcl.2017.05.025. [PMID: 28576617]
  • Qingqing Li, Kuansong Wang, Yipeng Ma, Chunxiang Qin, Changsheng Dong, Ping Jin, Yan Wu, Xiaoming Xiong, Niansheng Li, Changping Hu, Jun Peng, Zhichun Yang. Resveratrol derivative BTM-0512 mitigates obesity by promoting beige remodeling of subcutaneous preadipocytes. Acta biochimica et biophysica Sinica. 2017 Apr; 49(4):318-327. doi: 10.1093/abbs/gmx009. [PMID: 28338809]
  • Maria-Christina Scherzberg, Andreas Kiehl, Aleksandra Zivkovic, Holger Stark, Jürgen Stein, Robert Fürst, Dieter Steinhilber, Sandra Ulrich-Rückert. Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action. Toxicology and applied pharmacology. 2015 Aug; 287(1):67-76. doi: 10.1016/j.taap.2015.05.020. [PMID: 26044878]
  • Fahad S Aldawsari, Carlos A Velázquez-Martínez. 3,4',5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency. Investigational new drugs. 2015 Jun; 33(3):775-86. doi: 10.1007/s10637-015-0222-x. [PMID: 25720605]
  • Lu Zhang, Fang Dai, LiuQing Cui, Hongjuan Jing, Pei Fan, Xiaorong Tan, YuQi Guo, GuangZhou Zhou. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochimica et biophysica acta. 2015 Feb; 1853(2):377-87. doi: 10.1016/j.bbamcr.2014.10.030. [PMID: 25476892]
  • Mohamed A Zaki, Premalatha Balachandran, Shabana Khan, Mei Wang, Rabab Mohammed, Mona H Hetta, David S Pasco, Ilias Muhammad. Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3',5'-tetramethoxystilbene isolated from Eugenia rigida. Journal of natural products. 2013 Apr; 76(4):679-84. doi: 10.1021/np300893n. [PMID: 23547843]
  • Qiong Yuan, Lei Chen, Da-Xiong Xiang, Yuan-Jian Li, Chang-Ping Hu. Effect of resveratrol derivative BTM-0512 on high glucose-induced dysfunction of endothelial cells: role of SIRT1. Canadian journal of physiology and pharmacology. 2011 Oct; 89(10):713-22. doi: 10.1139/y11-069. [PMID: 21905824]
  • Victor S Sobolev, Shabana I Khan, Nurhayat Tabanca, David E Wedge, Susan P Manly, Stephen J Cutler, Monique R Coy, James J Becnel, Scott A Neff, James B Gloer. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids. Journal of agricultural and food chemistry. 2011 Mar; 59(5):1673-82. doi: 10.1021/jf104742n. [PMID: 21314127]
  • Hai-Shu Lin, Wei Zhang, Mei Lin Go, Qiu-Yi Choo, Paul C Ho. Determination of Z-3,5,4'-trimethoxystilbene in rat plasma by a simple HPLC method: application in a pre-clinical pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2010 Nov; 53(3):693-7. doi: 10.1016/j.jpba.2010.03.028. [PMID: 20427141]
  • Shiby Paul, Cassia S Mizuno, Hong Jin Lee, Xi Zheng, Sarah Chajkowisk, John M Rimoldi, Allan Conney, Nanjoo Suh, Agnes M Rimando. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. European journal of medicinal chemistry. 2010 Sep; 45(9):3702-8. doi: 10.1016/j.ejmech.2010.05.019. [PMID: 20627379]
  • Li Li, Xiu-Ju Luo, Ying-Zi Liu, Yi-Shuai Zhang, Qiong Yuan, Na Tan, Da-Xiong Xiang, Jun Peng. The role of the DDAH-ADMA pathway in the protective effect of resveratrol analog BTM-0512 on gastric mucosal injury. Canadian journal of physiology and pharmacology. 2010 May; 88(5):562-7. doi: 10.1139/y10-027. [PMID: 20555425]
  • N Ma, W-Y Liu, H-D Li, X-Y Jiang, W Liu, X Liu, C-F Deng, B-K Zhang, D-X Xiang. High-performance liquid chromatographic analysis of resveratrol analog 3,5,4'-trimethoxystilbene in rat plasma. Methods and findings in experimental and clinical pharmacology. 2008 Apr; 30(3):215-20. doi: 10.1358/mf.2008.30.3.1139052. [PMID: 18597006]
  • Ning Ma, Wen-ying Liu, Huan-de Li, Xin-yu Jiang, Bi-kui Zhang, Rong-hua Zhu, Feng Wang, Yue-liang Xie, Xiao-qian Zhou, Xue Wu, Da-xiong Xiang. RP-HPLC study of resveratrol derivative (BTM-0512) in rat plasma and tissue distribution. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 Nov; 42(11):1183-8. doi: NULL. [PMID: 18300476]
  • H Matsuda, T Kageura, T Morikawa, I Toguchida, S Harima, M Yoshikawa. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorganic & medicinal chemistry letters. 2000 Feb; 10(4):323-7. doi: 10.1016/s0960-894x(99)00702-7. [PMID: 10714491]