Glycoursodeoxycholic acid (BioDeep_00000027631)

 

Secondary id: BioDeep_00000408600, BioDeep_00000604046

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids PANOMIX LipidSearch


代谢物信息卡片


2-[(4R)-4-[(1S,2S,5R,7S,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid

化学式: C26H43NO5 (449.3141)
中文名称: 甘氨熊脱氧胆酸, 甘氨熊去氧胆酸, 甘氨酸熊去氧胆酸
谱图信息: 最多检出来源 Homo sapiens(bile_acids) 40.13%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Glycoursodeoxycholic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycoursodeoxycholic_acid (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000027631). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(CCC(=O)NCC(=O)O)C1CCC2C1(CCC3C2C(CC4C3(CCC(C4)O)C)O)C
InChI: InChI=1S/C26H43NO5/c1-15(4-7-22(30)27-14-23(31)32)18-5-6-19-24-20(9-11-26(18,19)3)25(2)10-8-17(28)12-16(25)13-21(24)29/h15-21,24,28-29H,4-14H2,1-3H3,(H,27,30)(H,31,32)/t15-,16+,17-,18-,19+,20+,21+,24+,25+,26-/m1/s1

描述信息

Glycoursodeoxycholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
Glycoursodeoxycholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Glycoursodeoxycholic acid, a acyl glycine and a bile acid-glycine conjugate, is a metabolite of ursodeoxycholic acid.

同义名列表

31 个代谢物同义名

2-[(4R)-4-[(1S,2S,5R,7S,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid; [(4R)-4-[(1S,2S,5R,7S,9S,10R,11S,14R,15R)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid; N-[(3alpha,5beta,7beta)-3,7-Dihydroxy-24-oxocholan-24-yl]glycine; N-[(3Α,5β,7β)-3,7-dihydroxy-24-oxocholan-24-yl]glycine; N-[(3a,5b,7b)-3,7-Dihydroxy-24-oxocholan-24-yl]glycine; N-(3alpha,7beta-Dihydroxy-5beta-cholan-24-oyl)glycine; (3beta,5beta,7beta)-3,7-Dihydroxycholan-24-Oic acid; 3beta,7beta-Dihydroxy-5beta-cholan-24-oic Acid; 3alpha,7beta-Dihydroxy-5beta-cholanoylglycine; N-(3Α,7β-dihydroxy-5β-cholan-24-oyl)glycine; N-(3a,7b-Dihydroxy-5b-cholan-24-oyl)glycine; (3Β,5β,7β)-3,7-dihydroxycholan-24-Oic acid; 3beta,7beta-Dihydroxy-5beta-cholanoic acid; 3beta,7beta-Dihydroxy-5beta-cholanic acid; 3Β,7β-dihydroxy-5β-cholan-24-Oic acid; 3a,7b-Dihydroxy-5b-cholanoylglycine; 3Α,7β-dihydroxy-5β-cholanoylglycine; 3Β,7β-dihydroxy-5β-cholanoic acid; 3β,7β-Dihydroxy-5β-cholanic acid; Glycine ursodeoxycholic acid; 3beta-Ursodeoxycholic acid; Glycylursodeoxycholic acid; Glycoursodeoxycholic acid; Glycine ursodeoxycholate; 3β-Ursodeoxycholic acid; Isoursodeoxycholic acid; Glycylursodeoxycholate; Ursodeoxycholylglycine; Glycoursodeoxycholate; GUDCA; Glycoursodeoxycholic acid (GUDCA)



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Chenlu Zhang, Yameng Liu, Ying Wang, Xiu Ge, Tingying Jiao, Jianpeng Yin, Kanglong Wang, Cuina Li, Shimeng Guo, Xin Xie, Cen Xie, Fajun Nan. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2022 10; 65(19):13452-13472. doi: 10.1021/acs.jmedchem.2c01394. [PMID: 36107013]
  • Michelle L Manni, Victoria A Heinrich, Gregory J Buchan, James P O'Brien, Crystal Uvalle, Veronika Cechova, Adolf Koudelka, Dharti Ukani, Mohamad Rawas-Qalaji, Tim D Oury, Renee Hart, Madeline Ellgass, Steven J Mullett, Merritt L Fajt, Sally E Wenzel, Fernando Holguin, Bruce A Freeman, Stacy G Wendell. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Scientific reports. 2021 09; 11(1):17788. doi: 10.1038/s41598-021-96471-9. [PMID: 34493738]
  • Lele Cheng, Tao Chen, Manyun Guo, Peining Liu, Xiangrui Qiao, Yuanyuan Wei, Jianqing She, Bolin Li, Wen Xi, Juan Zhou, Zuyi Yuan, Yue Wu, Junhui Liu. Glycoursodeoxycholic acid ameliorates diet-induced metabolic disorders with inhibiting endoplasmic reticulum stress. Clinical science (London, England : 1979). 2021 07; 135(14):1689-1706. doi: 10.1042/cs20210198. [PMID: 34236076]
  • Kan Huang, Chenshu Liu, Meixiu Peng, Qiao Su, Ruiming Liu, Zeling Guo, Sifan Chen, Zilun Li, Guangqi Chang. Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E-Deficient Mice. Journal of the American Heart Association. 2021 04; 10(7):e019820. doi: 10.1161/jaha.120.019820. [PMID: 33787322]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Lien Van den Bossche, Pieter Hindryckx, Lindsey Devisscher, Sarah Devriese, Sophie Van Welden, Tom Holvoet, Ramiro Vilchez-Vargas, Marius Vital, Dietmar H Pieper, Julie Vanden Bussche, Lynn Vanhaecke, Tom Van de Wiele, Martine De Vos, Debby Laukens. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Applied and environmental microbiology. 2017 04; 83(7):. doi: 10.1128/aem.02766-16. [PMID: 28115375]
  • Shyamchand Mayengbam, James D House, Michel Aliani. Investigation of vitamin B₆ inadequacy, induced by exposure to the anti-B₆ factor 1-amino D-proline, on plasma lipophilic metabolites of rats: a metabolomics approach. European journal of nutrition. 2016 Apr; 55(3):1213-23. doi: 10.1007/s00394-015-0934-x. [PMID: 26009005]
  • Mark Mapstone, Amrita K Cheema, Massimo S Fiandaca, Xiaogang Zhong, Timothy R Mhyre, Linda H MacArthur, William J Hall, Susan G Fisher, Derick R Peterson, James M Haley, Michael D Nazar, Steven A Rich, Dan J Berlau, Carrie B Peltz, Ming T Tan, Claudia H Kawas, Howard J Federoff. Plasma phospholipids identify antecedent memory impairment in older adults. Nature medicine. 2014 Apr; 20(4):415-8. doi: 10.1038/nm.3466. [PMID: 24608097]
  • Xiaoning Wang, Xiaoyan Wang, Guoxiang Xie, Mingmei Zhou, Huan Yu, Yan Lin, Guangli Du, Guoan Luo, Wei Jia, Ping Liu. Urinary metabolite variation is associated with pathological progression of the post-hepatitis B cirrhosis patients. Journal of proteome research. 2012 Jul; 11(7):3838-47. doi: 10.1021/pr300337s. [PMID: 22624806]
  • Xiaoqiang Xiang, Janne T Backman, Pertti J Neuvonen, Mikko Niemi. Gender, but not CYP7A1 or SLCO1B1 polymorphism, affects the fasting plasma concentrations of bile acids in human beings. Basic & clinical pharmacology & toxicology. 2012 Mar; 110(3):245-52. doi: 10.1111/j.1742-7843.2011.00792.x. [PMID: 21902813]
  • Rima Kaddurah-Daouk, Rebecca A Baillie, Hongjie Zhu, Zhao-Bang Zeng, Michelle M Wiest, Uyen Thao Nguyen, Katie Wojnoonski, Steven M Watkins, Miles Trupp, Ronald M Krauss. Enteric microbiome metabolites correlate with response to simvastatin treatment. PloS one. 2011; 6(10):e25482. doi: 10.1371/journal.pone.0025482. [PMID: 22022402]
  • Xiaoqiang Xiang, Yi Han, Mikko Neuvonen, Marja K Pasanen, Annikka Kalliokoski, Janne T Backman, Jouko Laitila, Pertti J Neuvonen, Mikko Niemi. Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans. Pharmacogenetics and genomics. 2009 Jun; 19(6):447-57. doi: 10.1097/fpc.0b013e32832bcf7b. [PMID: 19387419]
  • K Bentayeb, R Batlle, C Sánchez, C Nerín, C Domeño. Determination of bile acids in human serum by on-line restricted access material-ultra high-performance liquid chromatography-mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2008 Jun; 869(1-2):1-8. doi: 10.1016/j.jchromb.2008.04.045. [PMID: 18514045]
  • Maria A Brito, Sílvia Lima, Adelaide Fernandes, Ana S Falcão, Rui F M Silva, D Allan Butterfield, Dora Brites. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology. 2008 Mar; 29(2):259-69. doi: 10.1016/j.neuro.2007.11.002. [PMID: 18164405]
  • Sachiko Mita, Hiroshi Suzuki, Hidetaka Akita, Bruno Stieger, Peter J Meier, Alan F Hofmann, Yuichi Sugiyama. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. American journal of physiology. Gastrointestinal and liver physiology. 2005 Jan; 288(1):G159-67. doi: 10.1152/ajpgi.00360.2003. [PMID: 15297262]
  • E Tessier, L Neirinck, Z Zhu. High-performance liquid chromatographic mass spectrometric method for the determination of ursodeoxycholic acid and its glycine and taurine conjugates in human plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Dec; 798(2):295-302. doi: 10.1016/j.jchromb.2003.09.054. [PMID: 14643509]
  • Soichiro Hata, Pijun Wang, Nicole Eftychiou, Meenakshisundaram Ananthanarayanan, Ashok Batta, Gerald Salen, K Sandy Pang, Allan W Wolkoff. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. American journal of physiology. Gastrointestinal and liver physiology. 2003 Nov; 285(5):G829-39. doi: 10.1152/ajpgi.00352.2002. [PMID: 12842829]
  • K Sato, N Suzuki. Whole-cell response characteristics of ciliated and microvillous olfactory receptor neurons to amino acids, pheromone candidates and urine in rainbow trout. Chemical senses. 2001 Nov; 26(9):1145-56. doi: 10.1093/chemse/26.9.1145. [PMID: 11705800]
  • H C Walters, A L Craddock, H Fusegawa, M C Willingham, P A Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. American journal of physiology. Gastrointestinal and liver physiology. 2000 Dec; 279(6):G1188-200. doi: 10.1152/ajpgi.2000.279.6.g1188. [PMID: 11093941]
  • A L Craddock, M W Love, R W Daniel, L C Kirby, H C Walters, M H Wong, P A Dawson. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. The American journal of physiology. 1998 01; 274(1):G157-69. doi: 10.1152/ajpgi.1998.274.1.g157. [PMID: 9458785]
  • B L Strom, R D Soloway, J Rios-Dalenz, H A Rodriguez-Martinez, S L West, J L Kinman, R S Crowther, D Taylor, M Polansky, J A Berlin. Biochemical epidemiology of gallbladder cancer. Hepatology (Baltimore, Md.). 1996 Jun; 23(6):1402-11. doi: 10.1002/hep.510230616. [PMID: 8675157]
  • A Roda, E Roda, E Marchi, P Simoni, C Cerrè, A Pistillo, C Polimeni. Improved intestinal absorption of an enteric-coated sodium ursodeoxycholate formulation. Pharmaceutical research. 1994 May; 11(5):642-7. doi: 10.1023/a:1018907825281. [PMID: 8058630]
  • A K Batta, G Salen, S Shefer. Characterization of sarcosylsarcoursodeoxycholic acid formed during the synthesis of sarcoursodeoxycholic acid. Journal of lipid research. 1989 May; 30(5):771-4. doi: 10.1016/s0022-2275(20)38336-x. [PMID: 2760550]
  • C Marteau, H Portugal, S Mathieu, A M Pauli, A Gérolami. Effect of various bile salts on calcium concentration and calcium carbonate saturation of rat bile. Journal of hepatology. 1988 Aug; 7(1):57-62. doi: 10.1016/s0168-8278(88)80506-3. [PMID: 3183351]
  • A Stiehl, R Raedsch, G Rudolph, S Walker. Effect of ursodeoxycholic acid on biliary bile acid and bile lipid composition in gallstone patients. Hepatology (Baltimore, Md.). 1984 Jan; 4(1):107-11. doi: 10.1002/hep.1840040119. [PMID: 6693062]
  • A K Batta, S Shefer, G Salen. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids. Journal of lipid research. 1981 May; 22(4):712-4. doi: ". [PMID: 7276746]
  • H Igimi, M C Carey. Cholesterol gallstone dissolution in bile: dissolution kinetics of crystalline (anhydrate and monohydrate) cholesterol with chenodeoxycholate, ursodeoxycholate, and their glycine and taurine conjugates. Journal of lipid research. 1981 Feb; 22(2):254-70. doi: 10.1016/s0022-2275(20)35369-4. [PMID: 7240957]
  • H Igimi, M C Carey. pH-Solubility relations of chenodeoxycholic and ursodeoxycholic acids: physical-chemical basis for dissimilar solution and membrane phenomena. Journal of lipid research. 1980 Jan; 21(1):72-90. doi: 10.1016/s0022-2275(20)39841-2. [PMID: 7354256]