(±)-2-Hydroxy-2-phenylacetonitrile (BioDeep_00000019504)
Secondary id: BioDeep_00000004449, BioDeep_00000860458, BioDeep_00001868618
human metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H7NO (133.0527612)
中文名称: (R)-(+)-苯乙醇腈, 扁桃腈
谱图信息:
最多检出来源 Homo sapiens(blood) 0.43%
分子结构信息
SMILES: C1=CC=C(C=C1)C(C#N)O
InChI: InChI=1S/C8H7NO/c9-6-8(10)7-4-2-1-3-5-7/h1-5,8,10H
描述信息
(±)-2-Hydroxy-2-phenylacetonitrile, also known as mandelonitrile, alpha-hydroxybenzeneacetonitrile or benzal dehyde cyanohydrin, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. Mandelonitrile is a chemical compound of the cyanohydrin class. Hydroxy-2-phenylacetonitrile is a potentially toxic compound. The primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. (±)-2-Hydroxy-2-phenylacetonitrile has been detected, but not quantified, in fruits. This could make (±)-2-hydroxy-2-phenylacetonitrile a potential biomarker for the consumption of these foods. (±)-2- Oxygen therapy can also be administered.
Isolated from peach kernels (Prunus persica). (±)-2-Hydroxy-2-phenylacetonitrile is found in fruits.
同义名列表
14 个代谢物同义名
(R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE; (±)-2-Hydroxy-2-phenylacetonitrile; alpha-Hydroxybenzeneacetonitrile; 2-hydroxy-2-phenylacetonitrile; a-Hydroxybenzeneacetonitrile; Α-hydroxybenzeneacetonitrile; Mandelonitrile, (+-)-isomer; Benzaldehyde cyanohydrin; Mandelic acid nitrile; Phenylglycolonitrile; (R)-Mandelonitrile; Mandelate nitrile; Mandelonitrile; Mandelonitrile
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:18450
- ChEBI: CHEBI:16910
- KEGG: C00561
- PubChem: 9548674
- PubChem: 10758
- HMDB: HMDB0034666
- ChEMBL: CHEMBL1393845
- Wikipedia: Mandelonitrile
- MetaCyc: MANDELONITRILE
- MetaCyc: CPD-12702
- KNApSAcK: C00051456
- foodb: FDB013191
- chemspider: 10304
- CAS: 10020-96-9
- CAS: 532-28-5
- CAS: 613-88-7
- PMhub: MS000016906
- PubChem: 3841
- PDB-CCD: MXN
- 3DMET: B00132
- NIKKAJI: J6.985J
- RefMet: 2-Hydroxy-2-phenylacetonitrile
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(3)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
4 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 78168 - Passiflora edulis: 10.1016/S0031-9422(98)00130-7
- 36596 - Prunus armeniaca: 10.1002/OMS.1210190505
- 140311 - Prunus cerasus: 10.1002/PCA.2800040308
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cecilie Cetti Hansen, Mette Sørensen, Matteo Bellucci, Wolfgang Brandt, Carl Erik Olsen, Jason Q D Goodger, Ian E Woodrow, Birger Lindberg Møller, Elizabeth H J Neilson. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér.
The New phytologist.
2023 02; 237(3):999-1013. doi:
10.1111/nph.18581
. [PMID: 36305250] - A Bernal-Vicente, C Petri, J A Hernández, P Diaz-Vivancos. Biochemical study of the effect of stress conditions on the mandelonitrile-associated salicylic acid biosynthesis in peach.
Plant biology (Stuttgart, Germany).
2020 Mar; 22(2):277-286. doi:
10.1111/plb.13066
. [PMID: 31674699] - Tainá Neves Ferreira, Daniela Pita-Pereira, Samara Graciane Costa, Reginaldo Peçanha Brazil, Caroline Silva Moraes, Hector Manuel Díaz-Albiter, Fernando Ariel Genta. Transmission blocking sugar baits for the control of Leishmania development inside sand flies using environmentally friendly beta-glycosides and their aglycones.
Parasites & vectors.
2018 Nov; 11(1):614. doi:
10.1186/s13071-018-3122-z
. [PMID: 30501613] - Agustina Bernal-Vicente, Daniel Cantabella, Cesar Petri, José Antonio Hernández, Pedro Diaz-Vivancos. The Salt-Stress Response of the Transgenic Plum Line J8-1 and Its Interaction with the Salicylic Acid Biosynthetic Pathway from Mandelonitrile.
International journal of molecular sciences.
2018 Nov; 19(11):. doi:
10.3390/ijms19113519
. [PMID: 30413110] - Takuya Yamaguchi, Yasuhisa Asano. Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes.
Bioscience, biotechnology, and biochemistry.
2018 Nov; 82(11):2021-2029. doi:
10.1080/09168451.2018.1497942
. [PMID: 30027801] - A Bernal-Vicente, D Cantabella, J A Hernández, P Diaz-Vivancos. The effect of mandelonitrile, a recently described salicylic acid precursor, on peach plant response against abiotic and biotic stresses.
Plant biology (Stuttgart, Germany).
2018 Nov; 20(6):986-994. doi:
10.1111/plb.12894
. [PMID: 30098127] - Pedro Diaz-Vivancos, Agustina Bernal-Vicente, Daniel Cantabella, Cesar Petri, José Antonio Hernández. Metabolomics and Biochemical Approaches Link Salicylic Acid Biosynthesis to Cyanogenesis in Peach Plants.
Plant & cell physiology.
2017 Dec; 58(12):2057-2066. doi:
10.1093/pcp/pcx135
. [PMID: 29036663] - Dilek Alagöz, S Seyhan Tükel, Deniz Yildirim. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.
Applied biochemistry and biotechnology.
2015 Nov; 177(6):1348-63. doi:
10.1007/s12010-015-1819-4
. [PMID: 26310798] - Olga Sosedov, Andreas Stolz. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis.
Applied microbiology and biotechnology.
2015 Mar; 99(6):2623-35. doi:
10.1007/s00253-014-6061-4
. [PMID: 25248440] - Jan von Langermann, David M Nedrud, Romas J Kazlauskas. Increasing the reaction rate of hydroxynitrile lyase from Hevea brasiliensis toward mandelonitrile by copying active site residues from an esterase that accepts aromatic esters.
Chembiochem : a European journal of chemical biology.
2014 Sep; 15(13):1931-8. doi:
10.1002/cbic.201402081
. [PMID: 25044660] - Ivan Hajnal, Andrzej Lyskowski, Ulf Hanefeld, Karl Gruber, Helmut Schwab, Kerstin Steiner. Biochemical and structural characterization of a novel bacterial manganese-dependent hydroxynitrile lyase.
The FEBS journal.
2013 Nov; 280(22):5815-28. doi:
10.1111/febs.12501
. [PMID: 23981508] - Daniel Kadow, Karsten Voß, Dirk Selmar, Reinhard Lieberei. The cyanogenic syndrome in rubber tree Hevea brasiliensis: tissue-damage-dependent activation of linamarase and hydroxynitrile lyase accelerates hydrogen cyanide release.
Annals of botany.
2012 Jun; 109(7):1253-62. doi:
10.1093/aob/mcs057
. [PMID: 22451599] - Zhoutong Sun, Yuanyuan Ning, Lixia Liu, Yingmiao Liu, Bingbing Sun, Weihong Jiang, Chen Yang, Sheng Yang. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid.
Microbial cell factories.
2011 Sep; 10(?):71. doi:
10.1186/1475-2859-10-71
. [PMID: 21910908] - Yasuhisa Asano, Mohammad Dadashipour, Mizue Yamazaki, Nobutaka Doi, Hidenobu Komeda. Functional expression of a plant hydroxynitrile lyase in Escherichia coli by directed evolution: creation and characterization of highly in vivo soluble mutants.
Protein engineering, design & selection : PEDS.
2011 Aug; 24(8):607-16. doi:
10.1093/protein/gzr030
. [PMID: 21729945] - Soon-Mi Shim, Hoonjeong Kwon. Metabolites of amygdalin under simulated human digestive fluids.
International journal of food sciences and nutrition.
2010 Dec; 61(8):770-9. doi:
10.3109/09637481003796314
. [PMID: 20528582] - Santosh Kumar Padhi, Ryota Fujii, Graig A Legatt, Sara L Fossum, Reto Berchtold, Romas J Kazlauskas. Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions.
Chemistry & biology.
2010 Aug; 17(8):863-71. doi:
10.1016/j.chembiol.2010.06.013
. [PMID: 20797615] - Jan-Karl Guterl, Jennifer N Andexer, Torsten Sehl, Jan von Langermann, Ilona Frindi-Wosch, Tobias Rosenkranz, Jörg Fitter, Karl Gruber, Udo Kragl, Thorsten Eggert, Martina Pohl. Uneven twins: comparison of two enantiocomplementary hydroxynitrile lyases with alpha/beta-hydrolase fold.
Journal of biotechnology.
2009 May; 141(3-4):166-73. doi:
10.1016/j.jbiotec.2009.03.010
. [PMID: 19433222] - Ingrid Dreveny, Aleksandra S Andryushkova, Anton Glieder, Karl Gruber, Christoph Kratky. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity.
Biochemistry.
2009 Apr; 48(15):3370-7. doi:
10.1021/bi802162s
. [PMID: 19256550] - Ana M Fortes, Filipa Santos, Young H Choi, Marta S Silva, Andreia Figueiredo, Lisete Sousa, Fernando Pessoa, Bartolomeu A Santos, Mónica Sebastiana, Klaus Palme, Rui Malhó, Rob Verpoorte, Maria S Pais. Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses.
BMC genomics.
2008 Sep; 9(?):445. doi:
10.1186/1471-2164-9-445
. [PMID: 18823540] - Sven Rustler, Hassan Motejadded, Josef Altenbuchner, Andreas Stolz. Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid.
Applied microbiology and biotechnology.
2008 Aug; 80(1):87-97. doi:
10.1007/s00253-008-1531-1
. [PMID: 18523765] - Liliana Hernández, Héctor Luna, Arturo Navarro-Ocaña, Ma Teresa de Jesús Olivera-Flores, Ivon Ayala. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2008 Jul; 24(7):1199-201. doi:
10.1016/s1872-2075(08)60058-8
. [PMID: 18837395] - Jerome Grimplet, Laurent G Deluc, Richard L Tillett, Matthew D Wheatley, Karen A Schlauch, Grant R Cramer, John C Cushman. Tissue-specific mRNA expression profiling in grape berry tissues.
BMC genomics.
2007 Jun; 8(?):187. doi:
10.1186/1471-2164-8-187
. [PMID: 17584945] - Shi-Qing Han, Ping-Kai Ouyang, Ping Wei, Yi Hu. Enzymatic synthesis of (R)-cyanohydrins by a novel (R)-oxynitrilase from Vicia sativa L.
Biotechnology letters.
2006 Dec; 28(23):1909-12. doi:
10.1007/s10529-006-9175-7
. [PMID: 17028782] - Maria C P Silva, Walter R Terra, Clélia Ferreira. Absorption of toxic beta-glucosides produced by plants and their effect on tissue trehalases from insects.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2006 Mar; 143(3):367-73. doi:
10.1016/j.cbpb.2005.12.011
. [PMID: 16458033] - P Diaz-Vivancos, M Rubio, V Mesonero, P M Periago, A Ros Barceló, P Martínez-Gómez, J A Hernández. The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection.
Journal of experimental botany.
2006; 57(14):3813-24. doi:
10.1093/jxb/erl138
. [PMID: 17043083] - Yasuhisa Asano, Ken'ichirou Tamura, Nobutaka Doi, Techawaree Ueatrongchit, Aran H-Kittikun, Tohru Ohmiya. Screening for new hydroxynitrilases from plants.
Bioscience, biotechnology, and biochemistry.
2005 Dec; 69(12):2349-57. doi:
10.1271/bbb.69.2349
. [PMID: 16377893] - Amr Ageez, Yusuke Kazama, Ryuji Sugiyama, Shigeyuki Kawano. Male-fertility genes expressed in male flower buds of Silene latifolia include homologs of anther-specific genes.
Genes & genetic systems.
2005 Dec; 80(6):403-13. doi:
10.1266/ggs.80.403
. [PMID: 16501309] - Karina Sinding Hansen, Charlotte Kristensen, David Bruce Tattersall, Patrik Raymond Jones, Carl Erik Olsen, Søren Bak, Birger Lindberg Møller. The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor.
Phytochemistry.
2003 Sep; 64(1):143-51. doi:
10.1016/s0031-9422(03)00261-9
. [PMID: 12946413] - Navindra P Seeram, Robert H Cichewicz, Amitabh Chandra, Muraleedharan G Nair. Cyclooxygenase inhibitory and antioxidant compounds from crabapple fruits.
Journal of agricultural and food chemistry.
2003 Mar; 51(7):1948-51. doi:
10.1021/jf025993u
. [PMID: 12643656] - Tamara R Azevedo, Walter R Terra, Clélia Ferreira. Purification and characterization of three beta-glycosidases from midgut of the sugar cane borer, Diatraea saccharalis.
Insect biochemistry and molecular biology.
2003 Jan; 33(1):81-92. doi:
10.1016/s0965-1748(02)00179-0
. [PMID: 12459203] - Marc Morant, Alain Hehn, Danièle Werck-Reichhart. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants.
BMC plant biology.
2002 Aug; 2(?):7. doi:
10.1186/1471-2229-2-7
. [PMID: 12153706] - Jiming Zhou, Stefanie Hartmann, Brianne K Shepherd, Jonathan E Poulton. Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases.
Plant physiology.
2002 Jul; 129(3):1252-64. doi:
10.1104/pp.010863
. [PMID: 12114579] - A H Ferreira, S R Marana, W R Terra, C Ferreira. Purification, molecular cloning, and properties of a beta-glycosidase isolated from midgut lumen of Tenebrio molitor (Coleoptera) larvae.
Insect biochemistry and molecular biology.
2001 Oct; 31(11):1065-76. doi:
10.1016/s0965-1748(01)00054-6
. [PMID: 11520685] - A W Mondorf. [Evidence of urinary tubular proteins in inflammatory and toxic kidney damage].
Wiener medizinische Wochenschrift. Supplement.
1975; 27(?):20-3. doi:
NULL
. [PMID: 5816] - . .
.
. doi:
. [PMID: 21045121]
- . .
.
. doi:
. [PMID: 17548373]