Indole-3-propionic acid (BioDeep_00000018442)

 

Secondary id: BioDeep_00000014962, BioDeep_00000229615

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3-(1H-Indol-3-yl)propanoic acid

化学式: C11H11NO2 (189.0789746)
中文名称: 3-吲哚丙酸(IPA), 3-吲哚丙酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.03%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Indole-3-propionic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/indole-3-propionic_acid (retrieved 2024-11-09) (BioDeep RN: BioDeep_00000018442). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CCC(=O)O
InChI: InChI=1S/C11H11NO2/c13-11(14)6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6H2,(H,13,14)

描述信息

Indole-3-propionic acid (IPA, indole-3-propionate, or indole propionic acid), is a reductive product of tryptophan formed by bacteria in the gastrointestinal tract of mammals and birds (PMID:29168502). It is endogenously produced by human microbiota and has only been detected in vivo (PMID:19234110). While many microbial metabolites produced in the gut are toxic or act as uremic toxins (when they are reabsorbed through the gut epithelia), indole-3-propionic acid is a very beneficial microbial metabolite (PMID:30914514, 30862081, 29238104). In limited studies, urinary IPA correlates positively with disease and it remains unclear if this represents host bacteria responding to pathology via the production of IPA, or intestinal permeability changes leading to higher absorption and excretion of IPA, or inflammatory changes within kidneys leading to high excretion of IPA (PMID:32132996). Indole-3-propionic acid is a remarkably strong antioxidant (PMID:10721080). It is an even more potent scavenger of hydroxyl radicals than melatonin, the most potent scavenger of hydroxyl radicals synthesized by the human body. Similar to melatonin but unlike other antioxidants, indole-3-propionic acid scavenges radicals without subsequently generating reactive and pro-oxidant intermediate compounds (PMID:9928448, 10419516). Indole-3-propionic acid has been shown to prevent oxidative stress and the death of primary neurons and neuroblastoma cells exposed to the amyloid beta-protein in the form of amyloid fibrils, one of the most prominent neuropathologic features of Alzheimers disease. 3-Indolepropionic acid also shows a strong level of neuroprotection in two other paradigms of oxidative stress. (PMID 10419516) More recently it has been found that higher indole-3-propionic acid levels in serum/plasma are associated with a reduced likelihood of type 2 diabetes and with higher levels of consumption of fibre-rich foods (PMID:28397877). Studies have shown that serum levels of indole-3-propionic acid are positively correlated with dietary fibre intake and negatively correlated with C-reactive protein levels (PMID:29795366). Indole-3-propionic acid is a marker for the presence of Clostridium sporogenes in the gut. Higher levels are associated with higher levels of Clostridium sporogenes (PMID:7378938). In addition to its useful physiological role in mammals, indole-3-propionic acid is a plant hormone with functions similar to indole-3-acetic acid (or IAA), the major plant auxin. Recent studies have shed some light on additional mechanisms of action of IPA. In the intestine, IPA could serve as a ligand to an adopted orphan nuclear receptor, Pregnane X receptor (PXR) and act as an anti-inflammatory agent (PMID:25065623). This property has allowed investigators to develop more potent analogs targeting PXR (PMID:32153125). Other tissues may also be targeted by IPA in a similar manner (PMID:31211619).
Indole-3-propionate (IPA), a deamination product of tryptophan formed by symbiotic bacteria in the gastrointestinal tract of mammals and birds. 3-Indolepropionic acid has been shown to prevent oxidative stress and death of primary neurons and neuroblastoma cells exposed to the amyloid beta-protein in the form of amyloid fibrils, one of the most prominent neuropathologic features of Alzheimers disease. 3-Indolepropionic acid also shows a strong level of neuroprotection in two other paradigms of oxidative stress. (PMID: 10419516) [HMDB]. 1H-Indole-3-propanoic acid is found in common pea.
3-Indolepropionic acid is shown to be a powerful antioxidant and has potential in the treatment for Alzheimer’s disease.

同义名列表

49 个代谢物同义名

3-(1H-Indol-3-yl)propanoic acid; 3-(1H-Indol-3-yl)propionic acid; beta-(3-Indolyl)propionic acid; beta-(3-Indolyl)propanoic acid; 3-(Indole-3-yl)propionic acid; 3-(Indole-3-yl)propanoic acid; beta-Indole-3-propanoic acid; 3-(2-Carboxyethyl)-1H-indole; beta-Indole-3-propionic acid; 3-(3-Indolyl)propionic acid; β-(3-Indolyl)propanoic acid; 3-(1H-indol-3-yl)Propionate; 3-(1H-indol-3-yl)Propanoate; 3-(3-Indolyl)propanoic acid; Β-(3-indolyl)propionic acid; b-(3-Indolyl)propionic acid; 1H-Indole-3-propanoic acid; 1H-Indole-3-propionic acid; beta-(3-Indolyl)propionate; β-Indole-3-propanoic acid; beta-Indolepropionic acid; beta-Indolepropanoic acid; b-Indole-3-propionic acid; β-Indole-3-propionic acid; beta-Indole-3-propionate; Indole-3-propanoic acid; 3-(3-Indolyl)propanoate; Β-(3-indolyl)propionate; b-(3-Indolyl)propionate; 3-(3-Indolyl)propionate; Indole-3-propionic acid; b-Indolepropionic acid; 3-Indolepropionic acid; β-Indolepropionic acid; β-Indolepropanoic acid; 1H-Indole-3-propionate; Indol-3-propionic acid; beta-Indolepropionate; b-Indole-3-propionate; indolylpropionic acid; Indolepropionic acid; Indole-3-propionate; 3-Indolepropionate; b-Indolepropionate; Indole propionate; Indolepropionate; IPA; 3-Indolepropionic acid; 3-IPA



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

6 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dingjiacheng Jia, Qiwen Wang, Yadong Qi, Yao Jiang, Jiamin He, Yifeng Lin, Yong Sun, Jilei Xu, Wenwen Chen, Lina Fan, Ruochen Yan, Wang Zhang, Guohong Ren, Chaochao Xu, Qiwei Ge, Lan Wang, Wei Liu, Fei Xu, Pin Wu, Yuhao Wang, Shujie Chen, Liangjing Wang. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell. 2024 Mar; 187(7):1651-1665.e21. doi: 10.1016/j.cell.2024.02.022. [PMID: 38490195]
  • Lianru Chen, Ya Chen, Bin Wang, Zhongcheng Yang, Zongyu Cai, Xuekun Wang, Lidan Sun, Zheng Li, Guangji Wang. Design, synthesis, and biological evaluation of deuterated indolepropionic acid derivatives as novel long-acting pan PPARα/γ/δ agonists. Bioorganic & medicinal chemistry. 2023 12; 96(?):117533. doi: 10.1016/j.bmc.2023.117533. [PMID: 37976807]
  • Lu Chen, Yuxuan Yang, Siyu Sun, Yuan Xie, Cailong Pan, Maining Li, Chen Li, Yu Liu, Zhipeng Xu, Wentao Liu, Minjun Ji. Indolepropionic acid reduces obesity-induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell-derived IL-25. The FEBS journal. 2022 10; 289(19):5985-6004. doi: 10.1111/febs.16470. [PMID: 35509122]
  • Piotr Konopelski, Izabella Mogilnicka. Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. International journal of molecular sciences. 2022 Jan; 23(3):. doi: 10.3390/ijms23031222. [PMID: 35163143]
  • Shan Li, Xiaoyong Zhao, Feihong Lin, Xuqing Ni, Xia Liu, Chang Kong, Xinyu Yao, Yunchang Mo, Qinxue Dai, Junlu Wang. Gut Flora Mediates the Rapid Tolerance of Electroacupuncture on Ischemic Stroke by Activating Melatonin Receptor through Regulating Indole-3-Propionic Acid. The American journal of Chinese medicine. 2022; 50(4):979-1006. doi: 10.1142/s0192415x22500409. [PMID: 35475976]
  • Solomon E Owumi, Moses T Otunla, Uche O Arunsi, Eseroghene S Najophe. 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos. Toxicology. 2021 11; 463(?):152996. doi: 10.1016/j.tox.2021.152996. [PMID: 34678318]
  • Cai-Jie Zhou, Bai-Ling Xie, Hai-Yang Han, Yin Wang, Yong-Hua Wang, Jing-Yi Hong, Yi-Xia Wei, Zhi-Gang Liu, Yan Feng, Gui Yang, Ping-Chang Yang. Short-Chain Fatty Acids Promote Immunotherapy by Modulating Immune Regulatory Property in B Cells. Journal of immunology research. 2021; 2021(?):2684361. doi: 10.1155/2021/2684361. [PMID: 34926702]
  • Hui-Wen Xiao, Ming Cui, Yuan Li, Jia-Li Dong, Shu-Qin Zhang, Chang-Chun Zhu, Mian Jiang, Tong Zhu, Bin Wang, Hai-Chao Wang, Sai-Jun Fan. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome. 2020 05; 8(1):69. doi: 10.1186/s40168-020-00845-6. [PMID: 32434586]
  • Vivek Krishna Pulakazhi Venu, Mahmoud Saifeddine, Koichiro Mihara, Yi-Cheng Tsai, Kristoff Nieves, Laurie Alston, Sridhar Mani, Kathy D McCoy, Morley D Hollenberg, Simon A Hirota. The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation. American journal of physiology. Endocrinology and metabolism. 2019 08; 317(2):E350-E361. doi: 10.1152/ajpendo.00572.2018. [PMID: 31211619]
  • Yen Chin Koay, Jibran A Wali, Alison W S Luk, Laurence Macia, Victoria C Cogger, Tamara J Pulpitel, Devin Wahl, Samantha M Solon-Biet, Andrew Holmes, Stephen J Simpson, John F O'Sullivan. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 07; 33(7):8033-8042. doi: 10.1096/fj.201900177r. [PMID: 30925066]
  • Cristina Menni, Marisa Matey Hernandez, Marius Vital, Robert P Mohney, Tim D Spector, Ana M Valdes. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut microbes. 2019; 10(6):688-695. doi: 10.1080/19490976.2019.1586038. [PMID: 31030641]
  • Marjo Tuomainen, Jaana Lindström, Marko Lehtonen, Seppo Auriola, Jussi Pihlajamäki, Markku Peltonen, Jaakko Tuomilehto, Matti Uusitupa, Vanessa D de Mello, Kati Hanhineva. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutrition & diabetes. 2018 05; 8(1):35. doi: 10.1038/s41387-018-0046-9. [PMID: 29795366]
  • M Jennis, C R Cavanaugh, G C Leo, J R Mabus, J Lenhard, P J Hornby. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2018 02; 30(2):. doi: 10.1111/nmo.13178. [PMID: 28782205]
  • Dylan Dodd, Matthew H Spitzer, William Van Treuren, Bryan D Merrill, Andrew J Hryckowian, Steven K Higginbottom, Anthony Le, Tina M Cowan, Garry P Nolan, Michael A Fischbach, Justin L Sonnenburg. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017 11; 551(7682):648-652. doi: 10.1038/nature24661. [PMID: 29168502]
  • Tereza Pavlova, Veronika Vidova, Julie Bienertova-Vasku, Petr Janku, Martina Almasi, Jana Klanova, Zdenek Spacil. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Analytica chimica acta. 2017 Sep; 987(?):72-80. doi: 10.1016/j.aca.2017.08.022. [PMID: 28916042]
  • Bixia Lin, Ying Yu, Fangfei Liu, Yujuan Cao, Manli Guo. Tunable and Nontoxic Fluorescent Probes Based on Carbon Dots for Imaging of Indole Propionic Acid Receptor in Plant Tissues in Situ. Journal of fluorescence. 2017 Jul; 27(4):1495-1503. doi: 10.1007/s10895-017-2089-z. [PMID: 28508151]
  • T Pallister, M A Jackson, T C Martin, C A Glastonbury, A Jennings, M Beaumont, R P Mohney, K S Small, A MacGregor, C J Steves, A Cassidy, T D Spector, C Menni, A M Valdes. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. International journal of obesity (2005). 2017 07; 41(7):1106-1113. doi: 10.1038/ijo.2017.70. [PMID: 28293020]
  • Anders Abildgaard, Betina Elfving, Marianne Hokland, Gregers Wegener, Sten Lund. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology. 2017 05; 79(?):40-48. doi: 10.1016/j.psyneuen.2017.02.014. [PMID: 28259042]
  • Vanessa D de Mello, Jussi Paananen, Jaana Lindström, Maria A Lankinen, Lin Shi, Johanna Kuusisto, Jussi Pihlajamäki, Seppo Auriola, Marko Lehtonen, Olov Rolandsson, Ingvar A Bergdahl, Elise Nordin, Pirjo Ilanne-Parikka, Sirkka Keinänen-Kiukaanniemi, Rikard Landberg, Johan G Eriksson, Jaakko Tuomilehto, Kati Hanhineva, Matti Uusitupa. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific reports. 2017 04; 7(?):46337. doi: 10.1038/srep46337. [PMID: 28397877]
  • Veit Rothhammer, Ivan D Mascanfroni, Lukas Bunse, Maisa C Takenaka, Jessica E Kenison, Lior Mayo, Chun-Cheih Chao, Bonny Patel, Raymond Yan, Manon Blain, Jorge I Alvarez, Hania Kébir, Niroshana Anandasabapathy, Guillermo Izquierdo, Steffen Jung, Nikolaus Obholzer, Nathalie Pochet, Clary B Clish, Marco Prinz, Alexandre Prat, Jack Antel, Francisco J Quintana. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature medicine. 2016 06; 22(6):586-97. doi: 10.1038/nm.4106. [PMID: 27158906]
  • Sartaj Tabassum, Mehvash Zaki, Musheer Ahmad, Mohd Afzal, Saurabh Srivastav, Saripella Srikrishna, Farukh Arjmand. Synthesis and crystal structure determination of copper(II)-complex: In vitro DNA and HSA binding, pBR322 plasmid cleavage, cell imaging and cytotoxic studies. European journal of medicinal chemistry. 2014 Aug; 83(?):141-54. doi: 10.1016/j.ejmech.2014.06.018. [PMID: 24953031]
  • Grolamys Castillo, Alejandro Torrecillas, Clara Nogueiras, Georgina Michelena, José Sánchez-Bravo, Manuel Acosta. Simultaneous quantification of phytohormones in fermentation extracts of Botryodiplodia theobromae by liquid chromatography-electrospray tandem mass spectrometry. World journal of microbiology & biotechnology. 2014 Jul; 30(7):1937-46. doi: 10.1007/s11274-014-1612-5. [PMID: 24510403]
  • Hongyuan Yan, Fang Wang, Dandan Han, Gengliang Yang. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. The Analyst. 2012 Jun; 137(12):2884-90. doi: 10.1039/c2an35362h. [PMID: 22553770]
  • Zongbao Chen, Zian Lin, Lin Zhang, Yan Cai, Lan Zhang. Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking. The Analyst. 2012 Apr; 137(7):1723-9. doi: 10.1039/c2an16313f. [PMID: 22363931]
  • Jildau Bouwman, Jack Twe Vogels, Suzan Wopereis, Carina M Rubingh, Sabina Bijlsma, Ben van Ommen. Visualization and identification of health space, based on personalized molecular phenotype and treatment response to relevant underlying biological processes. BMC medical genomics. 2012 Jan; 5(?):1. doi: 10.1186/1755-8794-5-1. [PMID: 22221319]
  • Christine Böttcher, Paul K Boss, Christopher Davies. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of experimental botany. 2011 Aug; 62(12):4267-80. doi: 10.1093/jxb/err134. [PMID: 21543520]
  • Danny Alexander, Raffaella Lombardi, Gabriela Rodriguez, Matthew M Mitchell, Ali J Marian. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. European journal of clinical investigation. 2011 May; 41(5):527-38. doi: 10.1111/j.1365-2362.2010.02441.x. [PMID: 21155767]
  • Shaoliang Jiang, Jianrong Gao, Liang Han. Synthesis and biological activity of N-acyl O-indolylalkyl ethanolamines. Bioscience, biotechnology, and biochemistry. 2011; 75(4):768-70. doi: 10.1271/bbb.100804. [PMID: 21512235]
  • Stephen E Reichenbach, Xue Tian, Qingping Tao, Dwight R Stoll, Peter W Carr. Comprehensive feature analysis for sample classification with comprehensive two-dimensional LC. Journal of separation science. 2010 Jun; 33(10):1365-74. doi: 10.1002/jssc.200900859. [PMID: 20397213]
  • Magdalena Stasiak, Krzysztof Zasada, Andrzej Lewinski, Małgorzata Karbownik-Lewinska. Melatonin restores the basal level of lipid peroxidation in rat tissues exposed to potassium bromate in vitro. Neuro endocrinology letters. 2010; 31(3):363-9. doi: NULL. [PMID: 20588237]
  • Emeline L Maillet, Robert F Margolskee, Bedrich Mosinger. Phenoxy herbicides and fibrates potently inhibit the human chemosensory receptor subunit T1R3. Journal of medicinal chemistry. 2009 Nov; 52(21):6931-5. doi: 10.1021/jm900823s. [PMID: 19817384]
  • Qing Huang, Yi-Hong Lu, Guang-Ji Wang, Xin-Wen Wang, Nan Meng, Jie Gao, Di Lu, Xin Yan, Ying Zhang, Lin-Sheng Liu, Gang Hao, Bei Yan, Sheng-Hua Gu, Ji-Ye A. [Metabonomic profiling of plasma metabolites in Wistar rats to study the effect of aging by means of GC/TOFMS-based techniques]. Yao xue xue bao = Acta pharmaceutica Sinica. 2009 Oct; 44(10):1095-101. doi: NULL. [PMID: 20055130]
  • Bojana Savić, Sanja Tomić, Volker Magnus, Kristina Gruden, Katja Barle, Renata Grenković, Jutta Ludwig-Müller, Branka Salopek-Sondi. Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: a biochemical and modeling approach. Plant & cell physiology. 2009 Sep; 50(9):1587-99. doi: 10.1093/pcp/pcp101. [PMID: 19602499]
  • In Koo Hwang, Ki-Yeon Yoo, Hua Li, Ok Kyu Park, Choong Hyun Lee, Jung Hoon Choi, Young-Gil Jeong, Yun Lyul Lee, Young-Myeong Kim, Young-Guen Kwon, Moo-Ho Won. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. Journal of neuroscience research. 2009 Jul; 87(9):2126-37. doi: 10.1002/jnr.22030. [PMID: 19235887]
  • Mandi L Conrad, Annette C Moser, David S Hage. Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: Analysis by high-performance affinity chromatography. Journal of separation science. 2009 Apr; 32(8):1145-55. doi: 10.1002/jssc.200800567. [PMID: 19296478]
  • Magdalena Stasiak, Andrzej Lewiński, Małgorzata Karbownik-Lewińska. [Relationship between toxic effects of potassium bromate and endocrine glands]. Endokrynologia Polska. 2009 Jan; 60(1):40-50. doi: ". [PMID: 19224504]
  • Qiaomei Lu, Lan Zhang, Tianwen Chen, Minghua Lu, Tong Ping, Guonan Chen. Identification and quantitation of auxins in plants by liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid communications in mass spectrometry : RCM. 2008 Aug; 22(16):2565-72. doi: 10.1002/rcm.3642. [PMID: 18655000]
  • Ana Tomasić, Branimir Bertosa, Sanja Tomić, Milan Soskić, Volker Magnus. Binding behavior of amino acid conjugates of indole-3-acetic acid to immobilized human serum albumin. Journal of chromatography. A. 2007 Jun; 1154(1-2):240-9. doi: 10.1016/j.chroma.2007.03.095. [PMID: 17459401]
  • Andrew W Woodward, Sarah E Ratzel, Erin E Woodward, Yousif Shamoo, Bonnie Bartel. Mutation of E1-CONJUGATING ENZYME-RELATED1 decreases RELATED TO UBIQUITIN conjugation and alters auxin response and development. Plant physiology. 2007 Jun; 144(2):976-87. doi: 10.1104/pp.107.100404. [PMID: 17449645]
  • Małgorzata Karbownik, Magdalena Stasiak, Arkadiusz Zygmunt, Krzysztof Zasada, Andrzej Lewiński. Protective effects of melatonin and indole-3-propionic acid against lipid peroxidation, caused by potassium bromate in the rat kidney. Cell biochemistry and function. 2006 Nov; 24(6):483-9. doi: 10.1002/cbf.1321. [PMID: 16397908]
  • Malgorzata Karbownik, Magdalena Stasiak, Krzysztof Zasada, Arkadiusz Zygmunt, Andrzej Lewinski. Comparison of potential protective effects of melatonin, indole-3-propionic acid, and propylthiouracil against lipid peroxidation caused by potassium bromate in the thyroid gland. Journal of cellular biochemistry. 2005 May; 95(1):131-8. doi: 10.1002/jcb.20404. [PMID: 15723291]
  • James J Campanella, Adebanke F Olajide, Volker Magnus, Jutta Ludwig-Müller. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant physiology. 2004 Aug; 135(4):2230-40. doi: 10.1104/pp.104.043398. [PMID: 15299127]
  • A Segura Carretero, C Cruces-Blanco, M Soriano Peña, S Cortacero Ramírez, A Fernández Gutiérrez. Determination of phytohormones of environmental impact by capillary zone electrophoresis. Journal of agricultural and food chemistry. 2004 Mar; 52(6):1419-22. doi: 10.1021/jf0305377. [PMID: 15030189]
  • Makoto Ueno, Hitoshi Shibata, Junichi Kihara, Yuichi Honda, Sakae Arase. Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. The Plant journal : for cell and molecular biology. 2003 Oct; 36(2):215-28. doi: 10.1046/j.1365-313x.2003.01875.x. [PMID: 14535886]
  • Travis S Walker, Harsh Pal Bais, Kathleen M Halligan, Frank R Stermitz, Jorge M Vivanco. Metabolic profiling of root exudates of Arabidopsis thaliana. Journal of agricultural and food chemistry. 2003 Apr; 51(9):2548-54. doi: 10.1021/jf021166h. [PMID: 12696935]
  • E V Soniya, M R Das. In vitro organogenesis and genetic transformation in popular Cucumis sativus L. through Agrobacterium tumefaciens. Indian journal of experimental biology. 2002 Mar; 40(3):329-33. doi: ". [PMID: 12635705]
  • M Karbownik, R J Reiter, J Cabrera, J J Garcia. Comparison of the protective effect of melatonin with other antioxidants in the hamster kidney model of estradiol-induced DNA damage. Mutation research. 2001 Mar; 474(1-2):87-92. doi: 10.1016/s0027-5107(00)00164-0. [PMID: 11239965]
  • M Karbownik, E Gitto, A Lewiñski, R J Reiter. Relative efficacies of indole antioxidants in reducing autoxidation and iron-induced lipid peroxidation in hamster testes. Journal of cellular biochemistry. 2001; 81(4):693-9. doi: 10.1002/jcb.1100. [PMID: 11329624]
  • M Karbownik, R J Reiter, J J Garcia, J Cabrera, S Burkhardt, C Osuna, A Lewiński. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction. Journal of cellular biochemistry. 2001; 81(3):507-13. doi: 10.1002/1097-4644(20010601)81:3<507::aid-jcb1064>3.0.co;2-m. [PMID: 11255233]
  • Y J Chyan, B Poeggeler, R A Omar, D G Chain, B Frangione, J Ghiso, M A Pappolla. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. The Journal of biological chemistry. 1999 Jul; 274(31):21937-42. doi: 10.1074/jbc.274.31.21937. [PMID: 10419516]
  • B Poeggeler, M A Pappolla, R Hardeland, A Rassoulpour, P S Hodgkins, P Guidetti, R Schwarcz. Indole-3-propionate: a potent hydroxyl radical scavenger in rat brain. Brain research. 1999 Jan; 815(2):382-8. doi: 10.1016/s0006-8993(98)01027-0. [PMID: 9878843]
  • R Jarabak, J Westley. Localization of the sulfur-cyanolysis site of serum albumin to subdomain 3-AB. Journal of biochemical toxicology. 1991; 6(1):65-70. doi: 10.1002/jbt.2570060109. [PMID: 1880790]
  • N C Veitch, R J Williams. Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid. European journal of biochemistry. 1990 Apr; 189(2):351-62. doi: 10.1111/j.1432-1033.1990.tb15496.x. [PMID: 2338080]
  • N Grossowicz. Phytohormones as specific inhibitors of Legionella pneumophila growth. Israel journal of medical sciences. 1990 Apr; 26(4):187-90. doi: ". [PMID: 2347683]
  • J E Hall, J R Seed. Increased urinary excretion of aromatic amino acid catabolites by Microtus montanus chronically infected with Trypanosoma brucei gambiense. Comparative biochemistry and physiology. B, Comparative biochemistry. 1984; 77(4):755-60. doi: 10.1016/0305-0491(84)90309-2. [PMID: 6375946]
  • G Abu Sinna. The effect of the plant hormone indole-3-acetic acid and chemically related compounds on the growth of mouse fibroblast 3T3 cells. Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology. 1983; 74(2):433-6. doi: 10.1016/0742-8413(83)90127-5. [PMID: 6133692]
  • . . . . doi: . [PMID: 21307383]