N6-Methyladenosine (BioDeep_00000018429)
Secondary id: BioDeep_00000405736, BioDeep_00000406157
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C11H15N5O4 (281.11239900000004)
中文名称: N6-甲基腺苷, N6 -甲基腺苷
谱图信息:
最多检出来源 Homo sapiens(feces) 33.79%
Last reviewed on 2024-09-13.
Cite this Page
N6-Methyladenosine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/n6-methyladenosine (retrieved
2024-12-04) (BioDeep RN: BioDeep_00000018429). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CNC1=C2C(=NC=N1)N(C=N2)C3C(C(C(O3)CO)O)O
InChI: InChI=1S/C11H15N5O4/c1-12-9-6-10(14-3-13-9)16(4-15-6)11-8(19)7(18)5(2-17)20-11/h3-5,7-8,11,17-19H,2H2,1H3,(H,12,13,14)/t5-,7-,8-,11-/m1/s1
描述信息
N6-Methyladenosine is a methylated adenine residue. N6-Methyladenosine is an endogenous urinary nucleoside product of the degradation of transfer ribonucleic acid (tRNA); urinary nucleosides are biological markers for patients with colorectal cancer. tRNA has been shown to be excreted in abnormal amounts in the urine of cancer patients. tRNA from neoplastic tissue had a much more rapid turnover rate than the tRNA from the corresponding normal tissue. Evidence indicates that methylation of tRNA occurs only after synthesis of the intact macromolecule. Because there are no specific enzyme systems to incorporate the modified nucleosides into the macromolecular nucleic acid, these nucleosides once released in the process of tRNA turnover cannot be reutilized, nor are they further degraded, but are excreted in urine. (PMID: 15991285, 3506820) [HMDB]
N6-Methyladenosine is a methylated adenine residue. N6-Methyladenosine is an endogenous urinary nucleoside product of the degradation of transfer ribonucleic acid (tRNA); urinary nucleosides are biological markers for patients with colorectal cancer. tRNA has been shown to be excreted in abnormal amounts in the urine of cancer patients. tRNA from neoplastic tissue had a much more rapid turnover rate than the tRNA from the corresponding normal tissue. Evidence indicates that methylation of tRNA occurs only after synthesis of the intact macromolecule. Because there are no specific enzyme systems to incorporate the modified nucleosides into the macromolecular nucleic acid, these nucleosides once released in the process of tRNA turnover cannot be reutilized, nor are they further degraded, but are excreted in urine. (PMID: 15991285, 3506820).
N6-Methyladenosine is the most prevalent internal (non-cap) modification present in the messenger RNA (mRNA) of all higher eukaryotes. N6-Methyladenosine can modifies viral RNAs and has antiviral activities.
N6-Methyladenosine is the most prevalent internal (non-cap) modification present in the messenger RNA (mRNA) of all higher eukaryotes. N6-Methyladenosine can modifies viral RNAs and has antiviral activities.
同义名列表
17 个代谢物同义名
(2R,3S,4R,5R)-2-Hydroxymethyl-5-(6-methylamino-purin-9-yl)-tetrahydro-furan-3,4-diol; (2R,3S,4R,5R)-2-(hydroxymethyl)-5-[6-(methylamino)-9H-purin-9-yl]oxolane-3,4-diol; 6-methylamino-9-beta-delta-Ribofuranosyl-purine; 6-methylamino-9-beta-D-Ribofuranosyl-purine; 6-Methyladenosine;N-Methyladenosine; 6-Methylaminopurine ribonucleoside; 6-Methylaminopurine D-riboside; 6-Methylaminopurine riboside; N(6)-Monomethyladenosine; 6-Methylaminopurinosine; N(6)-Methyladenosine; N6-Methyladenosine; 6-Methyladenosine; N-Methyladenosine; N(6)MAdo; m6a; N6-methyladenosine
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:21891
- PubChem: 102175
- HMDB: HMDB0004044
- ChEMBL: CHEMBL383144
- Wikipedia: N6-Methyladenosine
- foodb: FDB023288
- chemspider: 92307
- CAS: 1867-73-8
- PMhub: MS000007914
- RefMet: N6-Methyladenosine
- medchemexpress: HY-N0086
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
30 个相关的代谢反应过程信息。
Reactome(30)
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cong Chen, Cai Jiang, Ting Lin, Yue Hu, Huijuan Wu, Qing Xiang, Minguang Yang, Sinuo Wang, Xiao Han, Jing Tao. Landscape of transcriptome-wide m6A modification in diabetic liver reveals rewiring of PI3K-Akt signaling after physical exercise.
Acta physiologica (Oxford, England).
2024 Jun; 240(6):e14154. doi:
10.1111/apha.14154
. [PMID: 38682314] - Junjie Pan, Fei Tong, Ning Ren, Lanqi Ren, Yibei Yang, Feng Gao, Qiaoping Xu. Role of N6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review).
Oncology reports.
2024 06; 51(6):. doi:
10.3892/or.2024.8747
. [PMID: 38757383] - Minggui Song, Jiawen Zhao, Chujun Zhang, Chengchao Jia, Jing Yang, Haonan Zhao, Jingjing Zhai, Beilei Lei, Shiheng Tao, Siqi Chen, Ran Su, Chuang Ma. PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants.
Plant physiology.
2024 May; 195(2):1200-1213. doi:
10.1093/plphys/kiae120
. [PMID: 38428981] - Yi-Hao Min, Wen-Xuan Shao, Qiu-Shuang Hu, Neng-Bin Xie, Shan Zhang, Yu-Qi Feng, Xi-Wen Xing, Bi-Feng Yuan. Simultaneous Detection of Adenosine-to-Inosine Editing and N6-Methyladenosine at Identical RNA Sites through Deamination-Assisted Reverse Transcription Stalling.
Analytical chemistry.
2024 May; 96(21):8730-8739. doi:
10.1021/acs.analchem.4c01022
. [PMID: 38743814] - Tian-Long Wang, Xiao-Juan Miao, Yan-Rong Shuai, Hao-Ping Sun, Xiao Wang, Min Yang, Nan Zhang. FAT1 inhibits the proliferation of DLBCL cells via increasing the m6A modification of YAP1 mRNA.
Scientific reports.
2024 05; 14(1):11836. doi:
10.1038/s41598-024-62793-7
. [PMID: 38782965] - Wanli Ji, Yan Huo, Yifan Zhang, Xiaojing Qian, Yi Ren, Cheng Hu, Jiaqi Zhang. Palmatine inhibits expression fat mass and obesity associated protein (FTO) and exhibits a curative effect in dextran sulfate sodium (DSS)-induced experimental colitis.
International immunopharmacology.
2024 May; 132(?):111968. doi:
10.1016/j.intimp.2024.111968
. [PMID: 38579565] - Ye Zhao, Kun-Jin Han, Yan-Ting Tian, Kai-Hua Jia, Yousry A El-Kassaby, Yue Wu, Jie Liu, Hua-Yu Si, Yu-Han Sun, Yun Li. N6-methyladenosine mRNA methylation positively regulated the response of poplar to salt stress.
Plant, cell & environment.
2024 May; 47(5):1797-1812. doi:
10.1111/pce.14844
. [PMID: 38314665] - Huayue Liu, Mengzhuo Lin, Hui Wang, Xue Li, Die Zhou, Xiaojing Bi, Yunwei Zhang. N6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum).
Plant science : an international journal of experimental plant biology.
2024 May; 342(?):112023. doi:
10.1016/j.plantsci.2024.112023
. [PMID: 38320658] - Jie Chen, Ziying Guan, Lina Sun, Xinlin Fan, Desen Wang, Xiaoqiang Yu, Lihua Lyu, Guojun Qi. N6-methyladenosine modification of RNA controls dopamine synthesis to influence labour division in ants.
Molecular ecology.
2024 Apr; 33(8):e17322. doi:
10.1111/mec.17322
. [PMID: 38501589] - Jiayao Wang, Jiehao Zhang, Hao Liu, Lingnan Meng, Xianchun Gao, Yihan Zhao, Chen Wang, Xiaoliang Gao, Ahui Fan, Tianyu Cao, Daiming Fan, Xiaodi Zhao, Yuanyuan Lu. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer.
Cancer communications (London, England).
2024 Apr; 44(4):469-490. doi:
10.1002/cac2.12534
. [PMID: 38512764] - Xiangdong Fan, Yitong Zhang, Ruiying Guo, Kuo Yue, Guy Smagghe, Yongyue Lu, Luoluo Wang. Decoding epitranscriptomic regulation of viral infection: mapping of RNA N6-methyladenosine by advanced sequencing technologies.
Cellular & molecular biology letters.
2024 Mar; 29(1):42. doi:
10.1186/s11658-024-00564-y
. [PMID: 38539075] - Gang Tu, Xuan Wang, Rong Xia, Bowen Song. m6A-TCPred: a web server to predict tissue-conserved human m6A sites using machine learning approach.
BMC bioinformatics.
2024 Mar; 25(1):127. doi:
10.1186/s12859-024-05738-1
. [PMID: 38528499] - Xiaowei Wu, Tingting Su, Songyao Zhang, Yu Zhang, Chui Eng Wong, Jinqi Ma, Yanlin Shao, Changmei Hua, Lisha Shen, Hao Yu. N6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis.
Nature plants.
2024 03; 10(3):469-482. doi:
10.1038/s41477-024-01638-7
. [PMID: 38448725] - Mengjie Zhu, Nan Wu, Jiayi Zhong, Chen Chen, Wenwen Liu, Yingdang Ren, Xifeng Wang, Huaibing Jin. N6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector.
Cell reports.
2024 Feb; 43(2):113821. doi:
10.1016/j.celrep.2024.113821
. [PMID: 38368611] - Huan Su, Lijun Meng, Zechao Qu, Wei Zhang, Nan Liu, Peijian Cao, Jingjing Jin. Genome-wide identification of the N6-methyladenosine regulatory genes reveals NtFIP37B increases drought resistance of tobacco (Nicotiana tabacum L.).
BMC plant biology.
2024 Feb; 24(1):134. doi:
10.1186/s12870-024-04813-2
. [PMID: 38403644] - Peng Xu, Kanghui Liu, Shansong Huang, Jialun Lv, Zhengyuan Yan, Han Ge, Quan Cheng, Zetian Chen, Peicheng Ji, Yawei Qian, Bowen Li, Hao Xu, Li Yang, Zekuan Xu, Diancai Zhang. N6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X.
Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association.
2024 Jan; ?(?):. doi:
10.1007/s10120-023-01463-5
. [PMID: 38252226] - Xinbin Zheng, Bo Zhou, Yuzhen Li, Hengren Zhong, Zhengxin Huang, Minhua Gu. Transcriptome-wide N6-methyladenosine methylation profile of atherosclerosis in mice.
BMC genomics.
2023 Dec; 24(1):774. doi:
10.1186/s12864-023-09878-1
. [PMID: 38097926] - Dandan Feng, Pengfei Li, Wei Xiao, Zhuan Pei, Peishun Chen, Mingrui Hu, Zhaoyu Yang, Teng Li, Zian Xia, Hanjin Cui, Haigang Li, Qing Huang, Wei Zhang, Tao Tang, Yang Wang. N6-methyladenosine profiling reveals that Xuefu Zhuyu decoction upregulates METTL14 and BDNF in a rat model of traumatic brain injury.
Journal of ethnopharmacology.
2023 Dec; 317(?):116823. doi:
10.1016/j.jep.2023.116823
. [PMID: 37348798] - Ping Luo, Shiqi Li, Wei Jing, Jiancheng Tu, Xinghua Long. N6-methyladenosine RNA modification in nonalcoholic fatty liver disease.
Trends in endocrinology and metabolism: TEM.
2023 12; 34(12):838-848. doi:
10.1016/j.tem.2023.09.002
. [PMID: 37758602] - Wil Prall, Arsheed H Sheikh, Jeremie Bazin, Jean Bigeard, Marilia Almeida-Trapp, Martin Crespi, Heribert Hirt, Brian D Gregory. Pathogen-induced m6A dynamics affect plant immunity.
The Plant cell.
2023 Oct; 35(11):4155-4172. doi:
10.1093/plcell/koad224
. [PMID: 37610247] - Jingyuan Zhang, Tianming Qiu, Xiaofeng Yao, Xiance Sun. Insights into the role of N6-methyladenosine in ferroptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Sep; 165(?):115192. doi:
10.1016/j.biopha.2023.115192
. [PMID: 37487443] - Xiaoyang Dou, Yu Xiao, Chao Shen, Kitty Wang, Tong Wu, Chang Liu, Yini Li, Xianbin Yu, Jun Liu, Qing Dai, Kinga Pajdzik, Chang Ye, Ruiqi Ge, Boyang Gao, Jianhua Yu, Shuying Sun, Mengjie Chen, Jianjun Chen, Chuan He. RBFOX2 recognizes N6-methyladenosine to suppress transcription and block myeloid leukaemia differentiation.
Nature cell biology.
2023 Aug; ?(?):. doi:
10.1038/s41556-023-01213-w
. [PMID: 37640841] - Ying Lv, Fei Han, Mengxia Liu, Ting Zhang, Guanshen Cui, Jiaojiao Wang, Ying Yang, Yun-Gui Yang, Wenqiang Yang. Characteristics of N6-methyladenosine Modification During Sexual Reproduction of Chlamydomonas reinhardtii.
Genomics, proteomics & bioinformatics.
2023 Aug; 21(4):756-768. doi:
10.1016/j.gpb.2022.04.004
. [PMID: 35550876] - Yini Li, Xiaoyang Dou, Jun Liu, Yu Xiao, Zhe Zhang, Lindsey Hayes, Rong Wu, Xiujuan Fu, Yingzhi Ye, Bing Yang, Lyle W Ostrow, Chuan He, Shuying Sun. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration.
Nature neuroscience.
2023 08; 26(8):1328-1338. doi:
10.1038/s41593-023-01374-9
. [PMID: 37365312] - Junliang Li, Jiayuan Wang, Qiuying Pang, Xiufeng Yan. Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris).
Plant science : an international journal of experimental plant biology.
2023 Jul; 335(?):111794. doi:
10.1016/j.plantsci.2023.111794
. [PMID: 37459955] - Yimeng Cui, Peiwei Wang, Mengli Li, Yujue Wang, Xinmiao Tang, Jingang Cui, Yu Chen, Teng Zhang. Cinnamic acid mitigates left ventricular hypertrophy and heart failure in part through modulating FTO-dependent N6-methyladenosine RNA modification in cardiomyocytes.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jul; 165(?):115168. doi:
10.1016/j.biopha.2023.115168
. [PMID: 37453198] - Jun Tang, Shuyan Chen, Guifang Jia. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants.
Plant communications.
2023 05; 4(3):100546. doi:
10.1016/j.xplc.2023.100546
. [PMID: 36627844] - Long Cai, Song Cui, Tao Jin, Xiaolong Huang, Haigang Hou, Benyuan Hao, Zhuang Xu, Liang Cai, Yuan Hu, Xue Yang, Lei Zhou, Ting Yu, Yunlu Tian, Xi Liu, Liangming Chen, Shijia Liu, Ling Jiang, Shirong Zhou, Jianmin Wan. The N6-methyladenosine binding proteins YTH03/05/10 coordinately regulate rice plant height.
Plant science : an international journal of experimental plant biology.
2023 Apr; 329(?):111546. doi:
10.1016/j.plantsci.2022.111546
. [PMID: 36464025] - Yu Tian, Haijuan Xiao, Yanhui Yang, Pingping Zhang, Jiahui Yuan, Wei Zhang, Lijie Chen, Yibao Fan, Jinze Zhang, Huan Cheng, Tingwei Deng, Lin Yang, Weiwei Wang, Guoyong Chen, Peiqin Wang, Peng Gong, Xing Niu, Xianbin Zhang. Crosstalk between 5-methylcytosine and N6-methyladenosine machinery defines disease progression, therapeutic response and pharmacogenomic landscape in hepatocellular carcinoma.
Molecular cancer.
2023 01; 22(1):5. doi:
10.1186/s12943-022-01706-6
. [PMID: 36627693] - Li Wang, Chenhui Yang, Qianru Shan, Miao Zhao, Juanjuan Yu, Yong-Fang Li. Transcriptome-wide profiling of mRNA N6-methyladenosine modification in rice panicles and flag leaves.
Genomics.
2023 01; 115(1):110542. doi:
10.1016/j.ygeno.2022.110542
. [PMID: 36535337] - Jiajun Shi, Qianyi Zhang, Xi Yin, Jiahui Ye, Shengqing Gao, Chen Chen, Yaxuan Yang, Baojuan Wu, Yuping Fu, Hongmei Zhang, Zhangding Wang, Bo Wang, Yun Zhu, Hongyan Wu, Yongzhong Yao, Guifang Xu, Qiang Wang, Shouyu Wang, Weijie Zhang. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner.
International journal of biological sciences.
2023; 19(2):449-464. doi:
10.7150/ijbs.76798
. [PMID: 36632454] - Bao Yuan, Jin Zhou. N6-methyladenosine (m6A) reader IGF2BP1 facilitates clear-cell renal cell carcinoma aerobic glycolysis.
PeerJ.
2023; 11(?):e14591. doi:
10.7717/peerj.14591
. [PMID: 36691477] - Hong Gil Lee, Jiwoo Kim, Pil Joon Seo. N6-methyladenosine-modified RNA acts as a molecular glue that drives liquid-liquid phase separation in plants.
Plant signaling & behavior.
2022 12; 17(1):2079308. doi:
10.1080/15592324.2022.2079308
. [PMID: 35621186] - Man Zhang, Yunping Zeng, Rong Peng, Jie Dong, Yelin Lan, Sujuan Duan, Zhenyi Chang, Jian Ren, Guanzheng Luo, Bing Liu, Kamil Růžička, Kewei Zhao, Hong-Bin Wang, Hong-Lei Jin. N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants.
Nature communications.
2022 12; 13(1):7441. doi:
10.1038/s41467-022-35146-z
. [PMID: 36460653] - Junfeng Cao, Chaochen Huang, Jun'e Liu, Chenyi Li, Xia Liu, Zishou Zheng, Lipan Hou, Jinquan Huang, Lingjian Wang, Yugao Zhang, Xiaoxia Shangguan, Zhiwen Chen. Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232214111
. [PMID: 36430588] - Xue Chen, Ying Wang, Jia-Nan Wang, Qiu-Chen Cao, Ru-Xu Sun, Hong-Jing Zhu, Ye-Ran Zhang, Jiang-Dong Ji, Qing-Huai Liu. m6A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis.
Cell reports.
2022 11; 41(7):111671. doi:
10.1016/j.celrep.2022.111671
. [PMID: 36384115] - Xiaoyu Huang, Nigara Abuduwaili, Xinting Wang, Miao Tao, Xiaoqian Wang, Gengqing Huang. Cotton (Gossypium hirsutum) VIRMA as an N6-Methyladenosine RNA Methylation Regulator Participates in Controlling Chloroplast-Dependent and Independent Leaf Development.
International journal of molecular sciences.
2022 Aug; 23(17):. doi:
10.3390/ijms23179887
. [PMID: 36077287] - Hao Peng, Binbin Chen, Wei Wei, Siyao Guo, Hui Han, Chunlong Yang, Jieyi Ma, Lu Wang, Sui Peng, Ming Kuang, Shuibin Lin. N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation.
Nature metabolism.
2022 08; 4(8):1041-1054. doi:
10.1038/s42255-022-00622-9
. [PMID: 35999469] - Leilei Zhou, Guangtong Gao, Renkun Tang, Weihao Wang, Yuying Wang, Shiping Tian, Guozheng Qin. m6 A-mediated regulation of crop development and stress responses.
Plant biotechnology journal.
2022 08; 20(8):1447-1455. doi:
10.1111/pbi.13792
. [PMID: 35178842] - Xingyu Tang, Peijie Zheng, Xueyong Li, Hongyan Wu, Dong-Qing Wei, Yuewu Liu, Guohua Huang. Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species.
Methods (San Diego, Calif.).
2022 08; 204(?):142-150. doi:
10.1016/j.ymeth.2022.04.011
. [PMID: 35477057] - Dawei Zhu, Yingting Liu, Junjun Chen, Qi Wang, Yuan Li, Yulan Zhu, Jun Feng, Jingting Jiang. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma.
Journal of translational medicine.
2022 07; 20(1):298. doi:
10.1186/s12967-022-03496-3
. [PMID: 35794583] - Meng Wu, Fulei Nie, Haibin Liu, Tianyang Zhang, Miaomiao Li, Xiaoming Song, Wei Chen. The evolution of N6-methyladenosine regulators in plants.
Methods (San Diego, Calif.).
2022 07; 203(?):268-275. doi:
10.1016/j.ymeth.2021.11.013
. [PMID: 34883238] - Lili Zhang, Xiaofang Luo, Sen Qiao. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma.
British journal of cancer.
2022 07; 127(1):30-42. doi:
10.1038/s41416-022-01757-y
. [PMID: 35249103] - Jianzi Lan, Bowen Xu, Xin Shi, Qi Pan, Qing Tao. WTAP-mediated N6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy.
Cellular & molecular biology letters.
2022 Jun; 27(1):51. doi:
10.1186/s11658-022-00350-8
. [PMID: 35761192] - You Wu, Xiaocui Xu, Meijie Qi, Chuan Chen, Mengying Li, Rushuang Yan, Xiaochen Kou, Yanhong Zhao, Wenqiang Liu, Yanhe Li, Xuelian Liu, Meiling Zhang, Chengqi Yi, Hongbin Liu, Junhong Xiang, Hong Wang, Bin Shen, Yawei Gao, Shaorong Gao. N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition.
Nature cell biology.
2022 06; 24(6):917-927. doi:
10.1038/s41556-022-00915-x
. [PMID: 35606490] - Linlin Zhang, Weiwei Ke, Xiangxuan Zhao, Zaiming Lu. Resina Draconis extract exerts anti-HCC effects through METTL3-m6A-Survivin axis.
Phytotherapy research : PTR.
2022 Jun; 36(6):2542-2557. doi:
10.1002/ptr.7467
. [PMID: 35443090] - Aolin Li, Congcong Cao, Ying Gan, Xiaofei Wang, Tianyu Wu, Quan Zhang, Yuchen Liu, Lin Yao, Qian Zhang. ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3.
Clinical and translational medicine.
2022 06; 12(6):e906. doi:
10.1002/ctm2.906
. [PMID: 35678231] - Chunguang Lei, Qingzhong Wang. The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders.
International journal of molecular sciences.
2022 May; 23(11):. doi:
10.3390/ijms23115922
. [PMID: 35682599] - Wenxiang Li, Yi Yu, Xuanrong Chen, Qian Fang, Anqi Yang, Xinyu Chen, Lei Wu, Chengyu Wang, Dechuan Wu, Sihong Ye, Dexiang Wu, Genlou Sun. N6-Methyladenosine dynamic changes and differential methylation in wheat grain development.
Planta.
2022 May; 255(6):125. doi:
10.1007/s00425-022-03893-4
. [PMID: 35567638] - Yuanlei Chen, Zeyi Lu, Chao Qi, Chenhao Yu, Yang Li, Wang Huan, Ruyue Wang, Wenqin Luo, Danyang Shen, Lifeng Ding, Liangliang Ren, Haiyun Xie, Dingwei Xue, Mingchao Wang, Kangxin Ni, Liqun Xia, Jun Qian, Gonghui Li. N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma.
Molecular cancer.
2022 05; 21(1):111. doi:
10.1186/s12943-022-01549-1
. [PMID: 35538475] - Li Liu, Jiangtu He, Guifeng Sun, Nan Huang, Zhixuan Bian, Chang Xu, Yue Zhang, Zhongqi Cui, Wenqiang Xu, Fenyong Sun, Chengle Zhuang, Qiuhong Man, Song Gu. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma.
Clinical and translational medicine.
2022 05; 12(5):e778. doi:
10.1002/ctm2.778
. [PMID: 35522946] - Shiyan Wang, Shanshan Gao, Yong Zeng, Lin Zhu, Yulin Mo, Chi Chun Wong, Yi Bao, Peiran Su, Jianning Zhai, Lina Wang, Fraser Soares, Xin Xu, Huarong Chen, Kebria Hezaveh, Xinpei Ci, Aobo He, Tracy McGaha, Catherine O'Brien, Robert Rottapel, Wei Kang, Jianfeng Wu, Gang Zheng, Zongwei Cai, Jun Yu, Housheng Hansen He. N6-Methyladenosine Reader YTHDF1 Promotes ARHGEF2 Translation and RhoA Signaling in Colorectal Cancer.
Gastroenterology.
2022 04; 162(4):1183-1196. doi:
10.1053/j.gastro.2021.12.269
. [PMID: 34968454] - Zhuonan Liu, Tianshui Sun, Chiyuan Piao, Zhe Zhang, Chuize Kong. METTL14-mediated N6-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma.
Cell communication and signaling : CCS.
2022 03; 20(1):36. doi:
10.1186/s12964-022-00831-5
. [PMID: 35305660] - Na Li, Tariq M Rana. Detection of N6-methyladenosine in SARS-CoV-2 RNA by methylated RNA immunoprecipitation sequencing.
STAR protocols.
2022 03; 3(1):101067. doi:
10.1016/j.xpro.2021.101067
. [PMID: 34901888] - Jingxuan Chen, Xuemei Wei, Xiao Wang, Tong Liu, Yingchi Zhao, Luoying Chen, Yujie Luo, Hongqiang Du, Yunfei Li, Tongtong Liu, Lili Cao, Zhe Zhou, Zeming Zhang, Ling Liang, Lu Li, Xuhui Yan, Xuehui Zhang, Xuliang Deng, Guang Yang, Ping Yin, Jianlei Hao, Zhinan Yin, Fuping You. TBK1-METTL3 axis facilitates antiviral immunity.
Cell reports.
2022 02; 38(7):110373. doi:
10.1016/j.celrep.2022.110373
. [PMID: 35172162] - Yinxiao Wang, Fengping Du, Yingbo Li, Juan Wang, Xiuqin Zhao, Zhikang Li, Jianlong Xu, Wensheng Wang, Binying Fu. Global N6-Methyladenosine Profiling Revealed the Tissue-Specific Epitranscriptomic Regulation of Rice Responses to Salt Stress.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23042091
. [PMID: 35216209] - Xingwang Zhao, Rui Dong, Longlong Zhang, Junkai Guo, Ying Shi, Lan Ge, Juan Wang, Zhiqiang Song, Bing Ni, Yi You. N6-methyladenosine-dependent modification of circGARS acts as a new player that promotes SLE progression through the NF-κB/A20 axis.
Arthritis research & therapy.
2022 02; 24(1):37. doi:
10.1186/s13075-022-02732-x
. [PMID: 35120571] - Tao Liu, Hui Wang, Zhibin Fu, Zheng Wang, Jie Wang, Xinxin Gan, Anbang Wang, Linhui Wang. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1.
Cancer science.
2022 Feb; 113(2):446-458. doi:
10.1111/cas.15212
. [PMID: 34813676] - L-H Chen, Y-Y Zhao, L Huang, Y-Z Li, H-Q Xu, C Yang, C Zhang. The potential roles of RNA N6-methyladenosine in atherosclerosis.
European review for medical and pharmacological sciences.
2022 Feb; 26(4):1075-1083. doi:
10.26355/eurrev_202202_28096
. [PMID: 35253196] - Felipe H Moura, Arturo Macias-Franco, Camilo A Pena-Bello, Evandro C Archilia, Isadora M Batalha, Aghata E M Silva, Gabriel M Moreira, Aaron B Norris, Luis F Schütz, Mozart A Fonseca. Sperm DNA 5-methyl cytosine and RNA N6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls.
Journal of animal science.
2022 Feb; 100(2):. doi:
10.1093/jas/skab362
. [PMID: 34902028] - Chunling Wang, Junbo Yang, Peizhe Song, Wei Zhang, Qiang Lu, Qiong Yu, Guifang Jia. FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering.
Genome biology.
2022 01; 23(1):40. doi:
10.1186/s13059-022-02612-2
. [PMID: 35101091] - Hee Kyung Lee, Byung Rho Lee, Tae Jin Lee, Chang Min Lee, Chenglong Li, Paul M O'Connor, Zheng Dong, Sang-Ho Kwon. Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys.
Scientific reports.
2022 01; 12(1):1646. doi:
10.1038/s41598-022-05648-3
. [PMID: 35102218] - Jianpeng Li, Jinlong Cao, Cheng Liang, Ran Deng, Pan Li, Junqiang Tian. The analysis of N6-methyladenosine regulators impacting the immune infiltration in clear cell renal cell carcinoma.
Medical oncology (Northwood, London, England).
2022 Jan; 39(4):41. doi:
10.1007/s12032-021-01645-0
. [PMID: 35092501] - Chen Gao, Ning Kong, Fan Zhang, Tianyu Tang, Jiaying Li, Honglei Ding, Zhichao Sun, Linyu Wu, Maosheng Xu. Risk stratification of lung adenocarcinoma using a nomogram combined with ferroptosis-related LncRNAs and subgroup analysis with immune and N6-methyladenosine modification.
BMC medical genomics.
2022 01; 15(1):15. doi:
10.1186/s12920-022-01164-5
. [PMID: 35093068] - Li Liu, Hui Li, Dingyu Hu, Yanyan Wang, Wenjun Shao, Jing Zhong, Shudong Yang, Jing Liu, Ji Zhang. Insights into N6-methyladenosine and programmed cell death in cancer.
Molecular cancer.
2022 01; 21(1):32. doi:
10.1186/s12943-022-01508-w
. [PMID: 35090469] - Qi Zhang, Bohan Cheng, Haixu Jiang, Huili Zhang, Hui Li. N6-methyladenosine demethylase ALKBH5: a novel regulator of proliferation and differentiation of chicken preadipocytes.
Acta biochimica et biophysica Sinica.
2022 01; 54(1):55-63. doi:
10.3724/abbs.2021007
. [PMID: 35130626] - Peng Cheng, Shengjie Bao, Chengxiang Li, Jianhua Tong, Lisha Shen, Hao Yu. RNA N6-methyladenosine modification promotes auxin biosynthesis required for male meiosis in rice.
Developmental cell.
2022 01; 57(2):246-259.e4. doi:
10.1016/j.devcel.2021.12.014
. [PMID: 35026163] - Hang Qin, Liang Ou, Jian Gao, Longxian Chen, Jia-Wei Wang, Pei Hao, Xuan Li. DENA: training an authentic neural network model using Nanopore sequencing data of Arabidopsis transcripts for detection and quantification of N6-methyladenosine on RNA.
Genome biology.
2022 01; 23(1):25. doi:
10.1186/s13059-021-02598-3
. [PMID: 35039061] - Zujie Xu, Ying Qin, Binbin Lv, Zhenjun Tian, Bing Zhang. Intermittent Fasting Improves High-Fat Diet-Induced Obesity Cardiomyopathy via Alleviating Lipid Deposition and Apoptosis and Decreasing m6A Methylation in the Heart.
Nutrients.
2022 Jan; 14(2):. doi:
10.3390/nu14020251
. [PMID: 35057432] - Zhenyan Miao, Ting Zhang, Bin Xie, Yuhong Qi, Chuang Ma. Evolutionary Implications of the RNA N6-Methyladenosine Methylome in Plants.
Molecular biology and evolution.
2022 01; 39(1):. doi:
10.1093/molbev/msab299
. [PMID: 34633447] - Cheng Zhong, Jia-Hua Liang, Zhen Chen, Li-Ping Zhong, Guo-Dong Sun, Wei-Xing Xie, Dong-Ping Wang, Wen-de Zhuang, Hao-Hua Guo, Da-Xiang Jin, Yu-Ming Li. Analysis of N6-Methyladenosine RNA Methylation Regulators in Diagnosis and Distinct Molecular Subtypes of Ankylosing Spondylitis.
Disease markers.
2022; 2022(?):4942599. doi:
10.1155/2022/4942599
. [PMID: 36157216] - Jianwei Xiao, Xu Cai, Rongsheng Wang, Weijian Zhou, Zhizhong Ye. Identification of Synovial Fibroblast-Associated Neuropeptide Genes and m6A Factors in Rheumatoid Arthritis Using Single-Cell Analysis and Machine Learning.
Disease markers.
2022; 2022(?):5114697. doi:
10.1155/2022/5114697
. [PMID: 35186167] - Xinyi Chen, Lu Wang, Jingyao Tu, Xin Pan, Yuehan Li, Han Yin, Moran Wang, Xianglin Yuan. Comprehensive Analysis of N6-Methyladenosine-Related IncRNAs Prognostic Signature and the Associated Immune Infiltrates in Kidney Renal Clear Cell Carcinoma.
Critical reviews in eukaryotic gene expression.
2022; 32(1):79-98. doi:
10.1615/critreveukaryotgeneexpr.2021039325
. [PMID: 35377983] - Ting Li, Yifan Zhu, Changjie Lin, Jie Chen, Yiya Yin, Xin Tang, Yingyu Chen, Aizhen Guo, Changmin Hu. N6-Methyladenosine Modification Profile in Bovine Mammary Epithelial Cells Treated with Heat-Inactivated Staphylococcus aureus.
Oxidative medicine and cellular longevity.
2022; 2022(?):1704172. doi:
10.1155/2022/1704172
. [PMID: 35251466] - Wei Ye, Tianpeng Huang. Correlation analysis of m6A-modified regulators with immune microenvironment infiltrating cells in lung adenocarcinoma.
PloS one.
2022; 17(2):e0264384. doi:
10.1371/journal.pone.0264384
. [PMID: 35196365] - Yonggang Zhang, Hongling Yang, Yan Long, Yipeng Zhang, Ronggui Chen, Junzhu Shi, Jiying Chen. circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion.
Scientific reports.
2021 12; 11(1):24357. doi:
10.1038/s41598-021-03662-5
. [PMID: 34934095] - Bo Zhang, Zhenmei Chen, Baorui Tao, Chenhe Yi, Zhifei Lin, Yitong Li, Weiqing Shao, Jing Lin, Jinhong Chen. m6A target microRNAs in serum for cancer detection.
Molecular cancer.
2021 12; 20(1):170. doi:
10.1186/s12943-021-01477-6
. [PMID: 34930277] - Hongyan Yu, Qinli Pu, Zhi Weng, Xi Zhou, Junjie Li, Yujun Yang, Wang Luo, Yongcan Guo, Huajian Chen, Ding Wang, Guoming Xie. DNAzyme based three-way junction assay for antibody-free detection of locus-specific N6-methyladenosine modifications.
Biosensors & bioelectronics.
2021 Dec; 194(?):113625. doi:
10.1016/j.bios.2021.113625
. [PMID: 34534950] - Zhenyu Yang, Bo Peng, Yongbo Pan, Yinmin Gu. Analysis and verification of N6-methyladenosine-modified genes as novel biomarkers for clear cell renal cell carcinoma.
Bioengineered.
2021 12; 12(2):9473-9483. doi:
10.1080/21655979.2021.1995574
. [PMID: 34699322] - Kun Wang, Jinying Peng, Chengqi Yi. The m6A Consensus Motif Provides a Paradigm of Epitranscriptomic Studies.
Biochemistry.
2021 11; 60(46):3410-3412. doi:
10.1021/acs.biochem.1c00254
. [PMID: 33969982] - João Tomé-Carneiro, María-Carmen López de Las Hazas, Hatim Boughanem, Yvonne Böttcher, Akin Cayir, Manuel Macias González, Alberto Dávalos. Up-to-date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?.
RNA biology.
2021 11; 18(sup2):586-599. doi:
10.1080/15476286.2021.2002003
. [PMID: 34843412] - Guoyun Zhang, Zhongrui Lv, Songfeng Diao, Hong Liu, Aiguo Duan, Caiyun He, Jianguo Zhang. Unique features of the m6A methylome and its response to drought stress in sea buckthorn (Hippophae rhamnoides Linn.).
RNA biology.
2021 11; 18(sup2):794-803. doi:
10.1080/15476286.2021.1992996
. [PMID: 34806556] - Yanjun He, Lili Li, Yixiu Yao, Yulin Li, Huiqing Zhang, Min Fan. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection.
BMC plant biology.
2021 Nov; 21(1):516. doi:
10.1186/s12870-021-03289-8
. [PMID: 34749644] - Xiaoshuai Wang, Jingwei Yu, Jinbao Chen, Yingdong Hou, Zefeng Du, Haoyang Huang, Siqi Tang, Yueyin Han, Changhai Ding, Zhicheng Xue. Copy number variation analysis of m6 A regulators identified METTL3 as a prognostic and immune-related biomarker in bladder cancer.
Cancer medicine.
2021 11; 10(21):7804-7815. doi:
10.1002/cam4.3981
. [PMID: 34668652] - Seiya Takemoto, Masataka Nakano, Tatsuki Fukami, Miki Nakajima. m6A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2.
Biochemical pharmacology.
2021 11; 193(?):114766. doi:
10.1016/j.bcp.2021.114766
. [PMID: 34536357] - Min Shen, Yujia Li, Yingqian Wang, Jiangjuan Shao, Feng Zhang, Guoping Yin, Anping Chen, Zili Zhang, Shizhong Zheng. N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells.
Redox biology.
2021 11; 47(?):102151. doi:
10.1016/j.redox.2021.102151
. [PMID: 34607160] - João H C Campos, Juliana T Maricato, Carla T Braconi, Fernando Antoneli, Luiz Mario R Janini, Marcelo R S Briones. Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Motif Methylation among Variants.
Viruses.
2021 10; 13(11):. doi:
10.3390/v13112108
. [PMID: 34834915] - Yanlin Shao, Chui Eng Wong, Lisha Shen, Hao Yu. N6-methyladenosine modification underlies messenger RNA metabolism and plant development.
Current opinion in plant biology.
2021 10; 63(?):102047. doi:
10.1016/j.pbi.2021.102047
. [PMID: 33965696] - Chunli Xia, Jian Wang, Zhiyong Wu, Yusong Miao, Chunli Chen, Rui Li, Jichang Li, Houjuan Xing. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway.
Toxicology.
2021 10; 462(?):152961. doi:
10.1016/j.tox.2021.152961
. [PMID: 34560125] - Xu Wang, Bochen Jiang, Lianfeng Gu, Yadi Chen, Manuel Mora, Mulangma Zhu, Eliace Noory, Qin Wang, Chentao Lin. A photoregulatory mechanism of the circadian clock in Arabidopsis.
Nature plants.
2021 10; 7(10):1397-1408. doi:
10.1038/s41477-021-01002-z
. [PMID: 34650267] - Dongqin Wei, Qian Sun, Yizhou Li, Chaowei Li, Xinjian Li, Chao Sun. Leptin Reduces Plin5 m6A Methylation through FTO to Regulate Lipolysis in Piglets.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910610
. [PMID: 34638947] - Laura Arribas-Hernández, Sarah Rennie, Tino Köster, Carlotta Porcelli, Martin Lewinski, Dorothee Staiger, Robin Andersson, Peter Brodersen. Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2.
eLife.
2021 09; 10(?):. doi:
10.7554/elife.72375
. [PMID: 34591015] - Zhihui Lu, Hong Liu, Nana Song, Yiran Liang, Jiaming Zhu, Jing Chen, Yichun Ning, Jiachang Hu, Yi Fang, Jie Teng, Jianzhou Zou, Yan Dai, Xiaoqiang Ding. METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1.
Cell death & disease.
2021 09; 12(10):881. doi:
10.1038/s41419-021-04156-y
. [PMID: 34580283] - Xueyan Zhang, Haojie Hao, Li Ma, Yecheng Zhang, Xiao Hu, Zhen Chen, Di Liu, Jianhui Yuan, Zhangli Hu, Wuxiang Guan. Methyltransferase-like 3 Modulates Severe Acute Respiratory Syndrome Coronavirus-2 RNA N6-Methyladenosine Modification and Replication.
mBio.
2021 08; 12(4):e0106721. doi:
10.1128/mbio.01067-21
. [PMID: 34225491] - Mingli Sun, Xinan Zhang. Epigenetic regulation of N6-methyladenosine modifications in obesity.
Journal of diabetes investigation.
2021 Aug; 12(8):1306-1315. doi:
10.1111/jdi.13571
. [PMID: 33979018] - Yuhao Zhang, Xiuchao Geng, Jianglong Xu, Qiang Li, Liangchao Hao, Zhaomu Zeng, Menglin Xiao, Jia Song, Fulin Liu, Chuan Fang, Hong Wang. Identification and characterization of N6-methyladenosine modification of circRNAs in glioblastoma.
Journal of cellular and molecular medicine.
2021 08; 25(15):7204-7217. doi:
10.1111/jcmm.16750
. [PMID: 34180136] - Erpeng Liu, Lei Lv, Yonghao Zhan, Yuan Ma, Jinjin Feng, Yulin He, Yibo Wen, Yanping Zhang, Qingsong Pu, Fengping Ji, Xinghuan Yang, Jian Guo Wen. METTL3/N6-methyladenosine/ miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-κB pathway activation.
Journal of cellular and molecular medicine.
2021 08; 25(16):7660-7674. doi:
10.1111/jcmm.16603
. [PMID: 34164910] - Yufan Ying, Xueyou Ma, Jiajie Fang, Shiming Chen, Weiyu Wang, Jiangfeng Li, Haiyun Xie, Jian Wu, Bo Xie, Ben Liu, Xiao Wang, Xiangyi Zheng, Liping Xie. EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization.
Cell death & disease.
2021 07; 12(8):750. doi:
10.1038/s41419-021-04038-3
. [PMID: 34326314] - Yuting Meng, Qiong Zhang, Kaihang Wang, Xujun Zhang, Rongwei Yang, Kefan Bi, Wenbiao Chen, Hongyan Diao. RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes.
Cell death & disease.
2021 07; 12(8):732. doi:
10.1038/s41419-021-04012-z
. [PMID: 34301919]