(3R)-Linalool (BioDeep_00000016652)
Main id: BioDeep_00000000443
Secondary id: BioDeep_00001890861
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C10H18O (154.1358)
中文名称: L-芳樟醇, (R)-3,7-二甲基-1,6-辛二烯-3-醇
谱图信息:
最多检出来源 Homo sapiens(otcml) 19.42%
分子结构信息
SMILES: C=C[C@](C)(O)CCC=C(C)C
InChI: InChI=1S/C10H18O/c1-5-10(4,11)8-6-7-9(2)3/h5,7,11H,1,6,8H2,2-4H3/t10-/m0/s1
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:28
- KEGG: C11388
- PubChem: 443158
- Metlin: METLIN41121
- ChEMBL: CHEMBL235672
- LipidMAPS: LMPR0102010013
- KNApSAcK: C00003047
- KNApSAcK: C00034888
- CAS: 126-91-0
- PubChem: 13562
- 3DMET: B04235
- NIKKAJI: J9.271A
- KNApSAcK: 28
- LOTUS: LTS0200382
- wikidata: Q27105200
分类词条
相关代谢途径
Reactome(0)
PlantCyc(5)
代谢反应
164 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(10)
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(154)
- tea aroma glycosidic precursor bioactivation:
H2O + eugenol O-β-D-xylopyranosyl-(1->6)-O-β-D-glucopyranoside ⟶ eugenol + primeverose
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- tea aroma glycosidic precursor bioactivation:
H2O + geranyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside ⟶ geraniol + primeverose
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- linalool biosynthesis I:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3R)-linalool + diphosphate
- (3R)-linalool biosynthesis:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- linalool biosynthesis I:
DMAPP + IPP ⟶ diphosphate + geranyl diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- superpathway of linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
- (3S)-linalool biosynthesis:
H2O + geranyl diphosphate ⟶ (3S)-linalool + diphosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
42 个相关的物种来源信息
- 260130 - Acca sellowiana:
- 4465 - Acorus calamus: 10.1016/J.PHYTOCHEM.2005.01.007
- 64478 - Actinidia arguta: 10.1016/J.PHYTOCHEM.2005.12.021
- 589713 - Anthemis aciphylla: 10.1248/CPB.54.222
- 158576 - Aristolochia trilobata: 10.3390/MOLECULES22030335
- 124943 - Azadirachta indica: 10.1246/CL.1979.1137
- 3429 - Calycanthus floridus: 10.1021/JA02187A025
- 4442 - Camellia sinensis: 10.1271/BBB.58.2050
- 79829 - Capillipedium parviflorum: 10.1016/J.PHYTOCHEM.2004.04.003
- 187461 - Chamaecyparis formosensis: 10.1246/NIKKASHI1921.63.1465
- 558547 - Citrus deliciosa:
- 170989 - Citrus hystrix: 10.1016/J.PHYTOCHEM.2009.07.031
- 200542 - Citrus limettioides: 10.3390/MOLECULES21060814
- 37334 - Citrus maxima:
- 171251 - Citrus medica: 10.3390/MOLECULES21060814
- 85571 - Citrus reticulata:
- 237574 - Citrus sunki: 10.3390/MOLECULES21060814
- 37690 - Citrus trifoliata: 10.3390/MOLECULES21060814
- 1204776 - Cyathocline purpurea: 10.1016/J.JEP.2012.11.045
- 66014 - Cymbopogon citratus: 10.1002/CBDV.201700436
- 1046361 - Fuscopostia leucomallella: 10.1016/J.PHYTOCHEM.2005.10.025
- 5315 - Ganoderma lucidum: 10.1016/J.PHYTOCHEM.2005.10.025
- 264418 - Hesperis matronalis: 10.1016/J.PHYTOCHEM.2006.12.009
- 16752 - Houttuynia cordata: 10.1248/CPB.54.936
- 58039 - Juniperus communis: 10.1139/V69-334
- 155299 - Litsea cubeba: 10.1002/RECL.19400590203
- 594549 - Lychnophora ericoides: 10.1016/J.PHYTOCHEM.2006.08.002
- 119949 - Myrtus communis: 10.1016/J.PHYTOCHEM.2006.04.025
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 497760 - Nicotiana mutabilis: 10.1016/J.PHYTOCHEM.2006.05.038
- 204149 - Ocimum tenuiflorum: 10.1371/JOURNAL.PONE.0207097
- 186965 - Petasites japonicus: 10.1248/YAKUSHI1947.93.1_123
- 13216 - Piper nigrum: 10.3390/MOLECULES24234244
- 203015 - Rhodiola rosea: 10.1016/S0031-9422(02)00004-3
- 182070 - Saxifraga stolonifera: 10.1016/0031-9422(83)85064-X
- 199663 - Siphonochilus aethiopicus: 10.1039/CT9150700314
- 354518 - Skimmia laureola: 10.1002/PRAC.19361470117
- 1547794 - Tarenna gracilipes: 10.1248/CPB.56.1153
- 532140 - Thymus marschallianus: 10.1007/BF00579141
- 751873 - Thymus pulegioides: 10.1007/BF00579141
- 49992 - Thymus vulgaris: 10.1002/CBDV.201700436
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Maritha Le Roux, J Christel Cronje, Barend V Burger, Elizabeth Joubert. Characterization of volatiles and aroma-active compounds in honeybush (Cyclopia subternata) by GC-MS and GC-O analysis.
Journal of agricultural and food chemistry.
2012 Mar; 60(10):2657-64. doi:
10.1021/jf2048383
. [PMID: 22394400] - Lucia de Fatima S Sampaio, José Guilherme S Maia, Amanda M de Parijós, Rita Z de Souza, Lauro Euclides S Barata. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity.
Phytotherapy research : PTR.
2012 Jan; 26(1):73-7. doi:
10.1002/ptr.3518
. [PMID: 21544884] - Jiao Yin, Honglin Feng, Hongyan Sun, Jinghui Xi, Yazhong Cao, Kebin Li. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae).
PloS one.
2012; 7(3):e33589. doi:
10.1371/journal.pone.0033589
. [PMID: 22479417] - Teun Dekker, Rickard Ignell, Maedot Ghebru, Robert Glinwood, Richard Hopkins. Identification of mosquito repellent odours from Ocimum forskolei.
Parasites & vectors.
2011 Sep; 4(?):183. doi:
10.1186/1756-3305-4-183
. [PMID: 21936953] - V R Coelho, J Gianesini, R Von Borowski, L Mazzardo-Martins, D F Martins, J N Picada, A R S Santos, L F S Brum, P Pereira. (-)-Linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2011 Jul; 18(10):896-901. doi:
10.1016/j.phymed.2011.02.010
. [PMID: 21420842] - A J Matich, D J Comeskey, B J Bunn, M B Hunt, D D Rowan. Biosynthesis and enantioselectivity in the production of the lilac compounds in Actinidia arguta flowers.
Phytochemistry.
2011 May; 72(7):579-86. doi:
10.1016/j.phytochem.2011.01.035
. [PMID: 21377706] - Christopher I Keeling, Sabrina Weisshaar, Steven G Ralph, Sharon Jancsik, Britta Hamberger, Harpreet K Dullat, Jörg Bohlmann. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.).
BMC plant biology.
2011 Mar; 11(?):43. doi:
10.1186/1471-2229-11-43
. [PMID: 21385377] - Mizue Sugiura, Sohei Ito, Yosuke Saito, Yasuo Niwa, Anna M Koltunow, Osamu Sugimoto, Hiroshi Sakai. Molecular cloning and characterization of a linalool synthase from lemon myrtle.
Bioscience, biotechnology, and biochemistry.
2011; 75(7):1245-8. doi:
10.1271/bbb.100922
. [PMID: 21737936] - Carolina E Reisenman, Jeffrey A Riffell, Elizabeth A Bernays, John G Hildebrand. Antagonistic effects of floral scent in an insect-plant interaction.
Proceedings. Biological sciences.
2010 Aug; 277(1692):2371-9. doi:
10.1098/rspb.2010.0163
. [PMID: 20335210] - Alicia K Phillips, Arthur G Appel. Fumigant toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae).
Journal of economic entomology.
2010 Jun; 103(3):781-90. doi:
10.1603/ec09358
. [PMID: 20568624] - Alicia K Phillips, Arthur G Appel, Steven R Sims. Topical toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae).
Journal of economic entomology.
2010 Apr; 103(2):448-59. doi:
10.1603/ec09192
. [PMID: 20429462] - M E Nehme, M A Keena, A Zhang, T C Baker, Z Xu, K Hoover. Evaluating the use of male-produced pheromone components and plant volatiles in two trap designs to monitor Anoplophora glabripennis.
Environmental entomology.
2010 Feb; 39(1):169-76. doi:
10.1603/en09177
. [PMID: 20146854] - Ben Webster, Salvador Gezan, Toby Bruce, Jim Hardie, John Pickett. Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants.
Phytochemistry.
2010 Jan; 71(1):81-9. doi:
10.1016/j.phytochem.2009.09.029
. [PMID: 19863976] - M E Nehme, M A Keena, A Zhang, T C Baker, K Hoover. Attraction of Anoplophora glabripennis to male-produced pheromone and plant volatiles.
Environmental entomology.
2009 Dec; 38(6):1745-55. doi:
10.1603/022.038.0628
. [PMID: 20021771] - Eleni Melliou, Melliou Eleni, Antonios Michaelakis, Michaelakis Antonios, George Koliopoulos, Koliopoulos George, Alexios-Leandros Skaltsounis, Skaltsounis Alexios-Leandros, Prokopios Magiatis, Magiatis Prokopios. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.
Molecules (Basel, Switzerland).
2009 Feb; 14(2):839-49. doi:
10.3390/molecules14020839
. [PMID: 19255543] - Olga Larkov, Alon Zaks, Einat Bar, Efraim Lewinsohn, Nativ Dudai, Alfred M Mayer, Uzi Ravid. Enantioselective monoterpene alcohol acetylation in Origanum, Mentha and Salvia species.
Phytochemistry.
2008 Oct; 69(14):2565-71. doi:
10.1016/j.phytochem.2008.07.018
. [PMID: 18834605] - Ben Webster, Toby Bruce, Samuel Dufour, Claudia Birkemeyer, Michael Birkett, Jim Hardie, John Pickett. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae.
Journal of chemical ecology.
2008 Sep; 34(9):1153-61. doi:
10.1007/s10886-008-9510-7
. [PMID: 18584254] - Valtcho D Zheljazkov, Charles L Cantrell, Babu Tekwani, Shabana I Khan. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting.
Journal of agricultural and food chemistry.
2008 Jan; 56(2):380-5. doi:
10.1021/jf0725629
. [PMID: 18095647] - Valtcho D Zheljazkov, Amber Callahan, Charles L Cantrell. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi.
Journal of agricultural and food chemistry.
2008 Jan; 56(1):241-5. doi:
10.1021/jf072447y
. [PMID: 18072735] - Weerachai Phutdhawong, Rungthip Kawaree, Samart Sanjaiya, Waya Sengpracha, Duang Buddhasukh. Microwave-assisted isolation of essential oil of Cinnamomum iners Reinw. ex Bl.: comparison with conventional hydrodistillation.
Molecules (Basel, Switzerland).
2007 Apr; 12(4):868-77. doi:
10.3390/12040868
. [PMID: 17851439] - Jun-Hyung Tak, Hyun-Kyung Kim, Seung-Hwan Lee, Young-Joon Ahn. Acaricidal activities of paeonol and benzoic acid from Paeonia suffruticosa root bark and monoterpenoids against Tyrophagus putrescentiae (Acari: Acaridae).
Pest management science.
2006 Jun; 62(6):551-7. doi:
10.1002/ps.1212
. [PMID: 16602084] - Stig Ulland, E Ian, A-K Borg-Karlson, H Mustaparta. Discrimination between enantiomers of linalool by olfactory receptor neurons in the cabbage moth Mamestra brassicae (L.).
Chemical senses.
2006 May; 31(4):325-34. doi:
10.1093/chemse/bjj036
. [PMID: 16495438] - Daniela Hampel, Armin Mosandl, Matthias Wüst. Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: 2H labeling studies.
Journal of agricultural and food chemistry.
2006 Feb; 54(4):1473-8. doi:
10.1021/jf0523972
. [PMID: 16478276] - Naoko Yoshida, Akiyoshi Takagi, Hidenori Kitazawa, Junichi Kawakami, Isao Adachi. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli fructus.
Toxicology and applied pharmacology.
2005 Dec; 209(2):167-73. doi:
10.1016/j.taap.2005.04.001
. [PMID: 15890377] - Kyoko Kuroda, Naohiko Inoue, Yuriko Ito, Kikue Kubota, Akio Sugimoto, Takami Kakuda, Tohru Fushiki. Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor components, on autonomic nerve activity and mood states.
European journal of applied physiology.
2005 Oct; 95(2-3):107-14. doi:
10.1007/s00421-005-1402-8
. [PMID: 15976995] - Barbara Miller, Lufiani L Madilao, Steven Ralph, Jörg Bohlmann. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce.
Plant physiology.
2005 Jan; 137(1):369-82. doi:
10.1104/pp.104.050187
. [PMID: 15618433] - Wellington de Abreu Gonzaga, Andréia Denise Weber, Sandro Rogério Giacomelli, Euclésio Simionatto, Ionara Irion Dalcol, Emilia Carolina Machado Dessoy, Ademir Farias Morel. Composition and antibacterial activity of the essential oils from Zanthoxylum rhoifolium.
Planta medica.
2003 Aug; 69(8):773-5. doi:
10.1055/s-2003-42783
. [PMID: 14531032] - Alessandra T Peana, Paolo S D'Aquila, M Loredana Chessa, Mario D L Moretti, Gino Serra, Proto Pippia. (-)-Linalool produces antinociception in two experimental models of pain.
European journal of pharmacology.
2003 Jan; 460(1):37-41. doi:
10.1016/s0014-2999(02)02856-x
. [PMID: 12535857] - L Hammack. Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles.
Journal of chemical ecology.
2001 Jul; 27(7):1373-90. doi:
10.1023/a:1010365225957
. [PMID: 11504034] - . .
.
. doi:
. [PMID: 15516500]
- . .
.
. doi:
. [PMID: 17440821]