DL-Xylose (BioDeep_00000016479)
Main id: BioDeep_00000002448
Secondary id: BioDeep_00000410688
PANOMIX_OTCML-2023 BioNovoGene_Lab2019
描述信息
DL-Xylose is an intermediate of organic synthesis.
DL-Xylose is an intermediate of organic synthesis.
D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.
D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.
同义名列表
10 个代谢物同义名
D-(+)-Xylose; DL-Xylose; (±)-Xylos; (+)-Xylose; Wood sugar; Xylose; D-Xylose; Xylose; D-Xylose; DL-Xylose
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:15936
- KEGG: C74347
- PubChem: 644160
- DrugBank: DB09419
- ChEMBL: CHEMBL1236821
- MeSH: Xylose
- CAS: 141492-19-5
- CAS: 25990-60-7
- CAS: 41247-05-6
- CAS: 25702-75-4
- CAS: 58-86-6
- medchemexpress: HY-B1070
- medchemexpress: HY-N0537
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-740
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-541
- KEGG: C00181
- PubChem: 3481
- KNApSAcK: 15936
- KEGG: C01394
- PubChem: 4585
- KNApSAcK: 18222
分类词条
相关代谢途径
Reactome(4)
代谢反应
295 个相关的代谢反应过程信息。
Reactome(70)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + Heparan sulfate chain(5) ⟶ Heparan sulfate chain(6) + SO4(2-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
BioCyc(2)
- ethylene glycol biosynthesis (engineered):
H+ + NADPH + glycolaldehyde ⟶ NADP+ + ethylene glycol
- xylose degradation I:
D-xylose ⟶ D-xylulose
WikiPathways(0)
Plant Reactome(219)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
D-xylose ⟶ D-xylulose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Xylose catabolism:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
INOH(0)
PlantCyc(4)
- D-xylose degradation I:
ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+
- D-xylose degradation I:
D-xylose ⟶ D-xylulose
- D-xylose degradation I:
D-xylose ⟶ D-xylulose
- D-xylose degradation I:
D-xylose ⟶ D-xylulose
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
22 个相关的物种来源信息
- 130426 - Allium chinense: 10.1016/J.CARBPOL.2014.10.019
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1988.TB13577.X
- 76830 - Ascoseira mirabilis: 10.1016/S0031-9422(00)85498-9
- 3821 - Cajanus cajan: 10.1002/JSFA.2740500106
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 20340 - Ceratonia siliqua: 10.1021/JF00071A015
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 233824 - Daviesia latifolia: 10.1039/CT9140500767
- 35925 - Diospyros kaki: 10.1007/BF01100201
- 75585 - Elliottia paniculata: 10.1248/YAKUSHI1947.94.12_1634
- 1937595 - Himatanthus articulatus: 10.1590/1809-4392200331110
- 9606 - Homo sapiens:
- 47085 - Medicago lupulina: 10.5586/ASBP.1984.048
- 33090 - Plants: -
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 32247 - Rubus idaeus: 10.1111/J.1365-2621.1980.TB02616.X
- 4547 - Saccharum officinarum: 10.1016/S0021-9673(01)88498-3
- 36599 - Sorbus aucuparia: 10.1111/J.1365-2621.1980.TB02616.X
- 189786 - Tamarix aphylla:
- 69904 - Tecoma stans: 10.5586/ASBP.1977.015
- 516948 - Vaccinium oxycoccos: 10.1111/J.1365-2621.1980.TB02616.X
- 767879 - Vachellia tortuosa: 10.1016/S0031-9422(97)00478-0
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Viviane Maria de Sousa Fontes, Mércia de Sousa Galvão, Leila Moreira de Carvalho, Fabyan Laís do Nascimento Guedes, Marcos Dos Santos Lima, Taliana Kênia Alencar Bezerra, Marta Suely Madruga. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds.
Food chemistry.
2024 Jul; 445(?):138398. doi:
10.1016/j.foodchem.2024.138398
. [PMID: 38394903] - Alexander S Shashkov, Natalia V Potekhina, Elena M Tul'skaya, Andrey S Dmitrenok, Sof'ya N Senchenkova, Vladimir I Torgov, Lubov V Dorofeeva, Lyudmila I Evtushenko. New lactate- and pyruvate-containing polysaccharide and rhamnomannan with xylose residues from the cell wall of Rathayibacter oskolensis VKM Ac-2121T.
Carbohydrate research.
2024 Jun; 540(?):109145. doi:
10.1016/j.carres.2024.109145
. [PMID: 38759341] - Samantha A Crowe, Xixi Zhao, Fei Gan, Xiaoyue Chen, Graham A Hudson, Maria C T Astolfi, Henrik V Scheller, Yuzhong Liu, Jay D Keasling. Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars.
ACS synthetic biology.
2024 Apr; 13(4):1215-1224. doi:
10.1021/acssynbio.3c00666
. [PMID: 38467016] - Lijun Li, Moshi Liu, Huiping Bi, Tao Liu. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli.
Metabolic engineering.
2024 Mar; 82(?):274-285. doi:
10.1016/j.ymben.2024.02.017
. [PMID: 38428730] - Junwei Zhang, Changchun Rui, Caijing Jia. An interpenetrating polymer networks based on polydivinylbenzene/aminated polyglycidyl methacrylate with better decolorization performance toward reducing sugar solution.
Food chemistry.
2024 Feb; 434(?):137483. doi:
10.1016/j.foodchem.2023.137483
. [PMID: 37722338] - Hajar Khaliliyan, Justine Lin, Paul Jusner, Sonja Schiehser, Markus Bacher, Mirjana Kostić, Thomas Rosenau, Antje Potthast, Stefan Böhmdorfer. Profiling of historical rag papers by their non-cellulosic polysaccharide composition.
Carbohydrate polymers.
2024 Feb; 326(?):121611. doi:
10.1016/j.carbpol.2023.121611
. [PMID: 38142095] - Fan Li, Wenxin Bai, Yuan Zhang, Zijian Zhang, Deguo Zhang, Naidong Shen, Jingwei Yuan, Guomiao Zhao, Xiaoyan Wang. Construction of an economical Xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation.
FEMS yeast research.
2024 Jan; ?(?):. doi:
10.1093/femsyr/foae001
. [PMID: 38268490] - Rui Zhao, Hongshen Li, Qi Li, Zefang Jia, Shizhong Li, Ling Zhao, Shan Li, Yuwei Wang, Wenxin Fan, Ruoqi Ren, Zitong Yuan, Mengchan Yang, Xiaomei Wang, Xin Zhao, Weihua Xiao, Jian Zhao, Limin Cao. High titer (>100 g/L) ethanol production from pretreated corn stover hydrolysate by modified yeast strains.
Bioresource technology.
2024 Jan; 391(Pt B):129993. doi:
10.1016/j.biortech.2023.129993
. [PMID: 37944621] - Víctor Martín Zelaya Alvarez, Paula Virginia Fernández, Marina Ciancia. A novel substitution pattern in glucuronoarabinoxylans from woody bamboos.
Carbohydrate polymers.
2024 Jan; 323(?):121356. doi:
10.1016/j.carbpol.2023.121356
. [PMID: 37940262] - Huan Liu, Xiaolan Huang, Yangming Liu, Xinyun Jing, Yuchen Ning, Peng Xu, Li Deng, Fang Wang. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica.
Journal of agricultural and food chemistry.
2023 Dec; 71(48):18909-18918. doi:
10.1021/acs.jafc.3c06528
. [PMID: 37999448] - Bhagwat Prasad Dewangan, Arunima Gupta, Rajan Kumar Sah, Shouvik Das, Sandeep Kumar, Saikat Bhattacharjee, Prashant Anupama-Mohan Pawar. Xylobiose treatment triggers a defense-related response and alters cell wall composition.
Plant molecular biology.
2023 Dec; 113(6):383-400. doi:
10.1007/s11103-023-01391-z
. [PMID: 37991689] - Emmanuel N Njoku, Walid Mottawea, Hebatoallah Hassan, Ahmed Gomaa, Nicolas Bordenave, Riadh Hammami. Bioengineered Wheat Arabinoxylan - Fostering Next-Generation Prebiotics Targeting Health-Related Gut Microbes.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Dec; 78(4):698-703. doi:
10.1007/s11130-023-01120-3
. [PMID: 37919537] - Meirong Gao, Yuxin Zhao, Zhanyi Yao, Qianhe Su, Payton Van Beek, Zengyi Shao. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.
Nature communications.
2023 Nov; 14(1):7797. doi:
10.1038/s41467-023-43049-w
. [PMID: 38016984] - Jung Sik Lim, Sarang Cho, Peter Capek, Seong Cheol Kim, Roman Bleha, Doo Jin Choi, Jin Ree, Jisun Lee, Andriy Synytsya, Yong Il Park. Water-extractable polysaccharide fraction PNE-P1 from Pinus koraiensis pine nut: Structural features and immunostimulatory activity.
Carbohydrate research.
2023 Nov; 534(?):108980. doi:
10.1016/j.carres.2023.108980
. [PMID: 37952447] - Vinod Kumar, Anu Radha, Varsha Sharma, Nagaraju Nekkala, Saurabh Saran. Utilization of xylose enriched extract from spent lemongrass hydrolysate for clavulanic acid production using Streptomyces clavuligerus (MTCC 1142).
Bioresource technology.
2023 Sep; 384(?):129268. doi:
10.1016/j.biortech.2023.129268
. [PMID: 37286045] - Samuel T Coradetti, Paul A Adamczyk, Di Liu, Yuqian Gao, Peter B Otoupal, Gina M Geiselman, Bobbie-Jo M Webb-Robertson, Meagan C Burnet, Young-Mo Kim, Kristin E Burnum-Johnson, Jon Magnuson, John M Gladden. Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts.
Microbial cell factories.
2023 Aug; 22(1):144. doi:
10.1186/s12934-023-02148-5
. [PMID: 37537586] - Paul A Adamczyk, Samuel T Coradetti, John M Gladden. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides.
Microbial cell factories.
2023 Aug; 22(1):145. doi:
10.1186/s12934-023-02126-x
. [PMID: 37537595] - Juan A Méndez-Líter, Laura I de Eugenio, Manuel Nieto-Domínguez, Alicia Prieto, María Jesús Martínez. Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241511997
. [PMID: 37569374] - Vandierly Sampaio de Melo, Brisa Moreira Gomes, Felipe Santiago Chambergo. Biochemical characterization of a xylose-tolerant GH43 β-xylosidase from Geobacillus thermodenitrificans.
Carbohydrate research.
2023 Jul; 532(?):108901. doi:
10.1016/j.carres.2023.108901
. [PMID: 37487384] - Kailash Yadav, Meenakshi Arya, Satya Prakash, Bhavana Sharma Jha, Preet Manchanda, Abhishek Kumar, Renu Deswal. Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface.
Planta.
2023 Jul; 258(2):44. doi:
10.1007/s00425-023-04203-2
. [PMID: 37460860] - André Vessoni Alexandrino, Evandro Luis Prieto, Nicole Castro Silva Nicolela, Tamiris Garcia da Silva Marin, Talita Alves Dos Santos, João Pedro Maia de Oliveira da Silva, Anderson Ferreira da Cunha, Franklin Behlau, Maria Teresa Marques Novo-Mansur. Xylose Isomerase Depletion Enhances Virulence of Xanthomonas citri subsp. citri in Citrus aurantifolia.
International journal of molecular sciences.
2023 Jul; 24(14):. doi:
10.3390/ijms241411491
. [PMID: 37511250] - Eunah Jeong, Wonyong Kim, Seungju Son, Sungyeon Yang, Dasom Gwon, Jihee Hong, Yoonhee Cho, Chang-Young Jang, Martin Steinegger, Young Woon Lim, Kyo Bin Kang. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis.
Proceedings of the National Academy of Sciences of the United States of America.
2023 07; 120(28):e2301007120. doi:
10.1073/pnas.2301007120
. [PMID: 37399371] - Takehiro Watanabe, Kohki Fujikawa, Soichiro Urai, Kazunari Iwaki, Tadayoshi Hirai, Katsuro Miyagawa, Hiroshi Uratani, Tohru Yamagaki, Koji Nagao, Yoshiaki Yokoo, Keiko Shimamoto. Identification, Chemical Synthesis, and Sweetness Evaluation of Rhamnose or Xylose Containing Steviol Glycosides of Stevia (Stevia rebaudiana) Leaves.
Journal of agricultural and food chemistry.
2023 Jul; ?(?):. doi:
10.1021/acs.jafc.3c01753
. [PMID: 37432401] - G Platamone, S Procacci, O Maccioni, I Borromeo, M Rossi, Loretta Bacchetta, C Forni. Arthrobacter sp. Inoculation Improves Cactus Pear Growth, Quality of Fruits, and Nutraceutical Properties of Cladodes.
Current microbiology.
2023 Jul; 80(8):266. doi:
10.1007/s00284-023-03368-z
. [PMID: 37400738] - Ellen R Wagner, Nicole M Nightingale, Annie Jen, Katherine A Overmyer, Mick McGee, Joshua J Coon, Audrey P Gasch. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae.
PLoS genetics.
2023 07; 19(7):e1010593. doi:
10.1371/journal.pgen.1010593
. [PMID: 37410771] - Yulu Ran, Qingzhuoma Yang, Jie Zeng, Fazhi Li, Yu Cao, Qingrui Xu, Dairong Qiao, Hui Xu, Yi Cao. Potential xylose transporters regulated by CreA improved lipid yield and furfural tolerance in oleaginous yeast Saitozyma podzolica zwy-2-3.
Bioresource technology.
2023 Jun; ?(?):129413. doi:
10.1016/j.biortech.2023.129413
. [PMID: 37390935] - Carolina Victal Garbelotti, Adriana Grandis, Eduardo Crevelin, Marcos Silveira Buckeridge, Luiz Alberto Beraldo de Moraes, Richard John Ward. Glycomic profiling identifies key-structural differences in three arabinoxylan fractions from sugarcane culms.
Carbohydrate polymers.
2023 Jun; 310(?):120694. doi:
10.1016/j.carbpol.2023.120694
. [PMID: 36925235] - Danfeng Shen, Xinrong Lu, Wenjie Li, Lin Zou, Yongliang Tong, Lei Wang, Lin Rao, Yuxin Zhang, Linlin Hou, Guiqin Sun, Li Chen. Identification and characterization of an α-1,3 mannosidase from Elizabethkingia meningoseptica and its potential attenuation impact on allergy associated with cross-reactive carbohydratedeterminant.
Biochemical and biophysical research communications.
2023 Jun; 672(?):17-26. doi:
10.1016/j.bbrc.2023.06.035
. [PMID: 37331167] - Rishitha L Nalabothu, Kaitlin J Fisher, Abigail Leavitt LaBella, Taylor A Meyer, Dana A Opulente, John F Wolters, Antonis Rokas, Chris Todd Hittinger. Codon Optimization Improves the Prediction of Xylose Metabolism from Gene Content in Budding Yeasts.
Molecular biology and evolution.
2023 06; 40(6):. doi:
10.1093/molbev/msad111
. [PMID: 37154525] - Ignacio Álvarez-Martínez, Colin Ruprecht, Deborah Senf, Hsin-Tzu Wang, Breeanna R Urbanowicz, Fabian Pfrengle. Chemo-Enzymatic Synthesis of Long-Chain Oligosaccharides for Studying Xylan-Modifying Enzymes.
Chemistry (Weinheim an der Bergstrasse, Germany).
2023 May; 29(26):e202203941. doi:
10.1002/chem.202203941
. [PMID: 36791391] - Italo de Andrade Bianchini, Fanny Machado Jofre, Sarah de Souza Queiroz, Talita Martins Lacerda, Maria das Graças de Almeida Felipe. Relation of xylitol formation and lignocellulose degradation in yeast.
Applied microbiology and biotechnology.
2023 May; 107(10):3143-3151. doi:
10.1007/s00253-023-12495-3
. [PMID: 37039848] - Alīna Reķēna, Marina J Pinheiro, Nemailla Bonturi, Isma Belouah, Eliise Tammekivi, Koit Herodes, Eduard J Kerkhoven, Petri-Jaan Lahtvee. Genome-scale metabolic modeling reveals metabolic trade-offs associated with lipid production in Rhodotorula toruloides.
PLoS computational biology.
2023 Apr; 19(4):e1011009. doi:
10.1371/journal.pcbi.1011009
. [PMID: 37099621] - Yao Zhang, Yueping Yang, Qing Liu, Shaoqi Li, Yuanda Song. Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose.
Applied biochemistry and biotechnology.
2023 Apr; ?(?):. doi:
10.1007/s12010-023-04531-9
. [PMID: 37086376] - Saumashish Mukherjee, Tushar Dilipchand Lodha, Jogi Madhuprakash. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus Paenibacillus: Special Emphasis on the Novel Xylanolytic Paenibacillus sp. LS1.
Microbiology spectrum.
2023 Apr; ?(?):e0502822. doi:
10.1128/spectrum.05028-22
. [PMID: 37071006] - Shang-Ting Tsai, Hsu-Chen Hsu, Chi-Kung Ni. A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides.
The Analyst.
2023 Apr; 148(8):1712-1731. doi:
10.1039/d3an00068k
. [PMID: 36929945] - Kun Wang, Xujie Cui, Xiaocui Ling, Jiarui Chen, Jiachen Zheng, Yuling Xiang, Weihui Li. D-Xylose Blocks the Broad Negative Regulation of XylR on Lipid Metabolism and Affects Multiple Physiological Characteristics in Mycobacteria.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087086
. [PMID: 37108247] - Yao Zhang, Yueping Yang, Silu Zhang, Qing Liu, Wenrui Dang, Yuanda Song. Lipid accumulation and SNF1 transcriptional analysis of Mucor circinelloides on xylose under nitrogen limitation.
Antonie van Leeuwenhoek.
2023 Apr; 116(4):383-391. doi:
10.1007/s10482-023-01810-7
. [PMID: 36656419] - Yang Liu, Qiwei Guo, Saimin Zhang, Yilin Bao, Mengling Chen, Lin Gao, Yang Zhang, Hongli Zhou. Polysaccharides from Discarded Stems of Trollius chinensis Bunge Elicit Promising Potential in Cosmetic Industry: Characterization, Moisture Retention and Antioxidant Activity.
Molecules (Basel, Switzerland).
2023 Mar; 28(7):. doi:
10.3390/molecules28073114
. [PMID: 37049877] - Tao Sun, Yizi Yu, Lexin Wang, Yichun Qi, Tian Xu, Zhe Wang, Lu Lin, Rodrigo Ledesma-Amaro, Xiao-Jun Ji. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Yarrowia lipolytica.
ACS synthetic biology.
2023 03; 12(3):761-767. doi:
10.1021/acssynbio.2c00550
. [PMID: 36789673] - Friederike Mierke, Daniel P Brink, Joakim Norbeck, Verena Siewers, Thomas Andlid. Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates.
Fungal genetics and biology : FG & B.
2023 Mar; ?(?):103783. doi:
10.1016/j.fgb.2023.103783
. [PMID: 36870442] - Theodora Tryfona, Matthieu Bourdon, Rita Delgado Marques, Marta Busse-Wicher, Francisco Vilaplana, Katherine Stott, Paul Dupree. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin.
The Plant journal : for cell and molecular biology.
2023 03; 113(5):1004-1020. doi:
10.1111/tpj.16096
. [PMID: 36602010] - Ao Sun, Lining Chen, Wei Wu, Olugbenga P Soladoye, Yuhao Zhang, Yu Fu. The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor.
Food research international (Ottawa, Ont.).
2023 03; 165(?):112512. doi:
10.1016/j.foodres.2023.112512
. [PMID: 36869515] - Ronivaldo Rodrigues da Silva, Mohammed Anas Zaiter, Maurício Boscolo, Roberto da Silva, Eleni Gomes. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].
2023 Feb; ?(?):. doi:
10.1007/s42770-023-00937-z
. [PMID: 36826705] - Diptarka Dasgupta, Vishal Ahuja, Raghuvir Singh, Snehal More, Sandeep Mudliar, Madan Kumar. Food-grade xylitol production from corncob biomass with acute oral toxicity studies.
World journal of microbiology & biotechnology.
2023 Feb; 39(4):102. doi:
10.1007/s11274-023-03542-2
. [PMID: 36797527] - Mee-Rye Park, Rahul Gauttam, Bonnie Fong, Yan Chen, Hyun Gyu Lim, Adam M Feist, Aindrila Mukhopadhyay, Christopher J Petzold, Blake A Simmons, Steven W Singer. Revealing oxidative pentose metabolism in new Pseudomonas putida isolates.
Environmental microbiology.
2023 Feb; 25(2):493-504. doi:
10.1111/1462-2920.16296
. [PMID: 36465038] - Li Tan, Liang Zhang, Ian Black, John Glushka, Breeanna Urbanowicz, Christian Heiss, Parastoo Azadi. Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein.
Carbohydrate polymers.
2023 Feb; 301(Pt B):120340. doi:
10.1016/j.carbpol.2022.120340
. [PMID: 36446508] - Rahele Panahabadi, Asadollah Ahmadikhah, Naser Farrokhi. Genetic dissection of monosaccharides contents in rice whole grain using genome-wide association study.
The plant genome.
2023 Jan; ?(?):e20292. doi:
10.1002/tpg2.20292
. [PMID: 36691363] - Jin-Ichi Inokuchi, Shinji Go, Yoshio Hirabayashi. Synthesis of O-Linked Glycoconjugates in the Nervous System.
Advances in neurobiology.
2023; 29(?):95-116. doi:
10.1007/978-3-031-12390-0_4
. [PMID: 36255673] - Lu Chen, Qianyun Peng, Yuner Chen, Chengsong Wang, Kunzhi Li, Hongjuan Nian. Enhancement production of lipid and unsaturation of fatty acids in Cryptococcus humicola via addition of calcium ion.
World journal of microbiology & biotechnology.
2022 Dec; 39(2):50. doi:
10.1007/s11274-022-03502-2
. [PMID: 36542152] - Yu Yao, Jiajun Gu, Yanjiao Luo, Yixin Zhang, Yuanyue Wang, Yongzhen Pang, Shangang Jia, Chaoqun Xu, Doudou Li, Fengmei Suo, Guoan Shen, Baolin Guo. A Novel 3-O-rhamnoside: 2″-O-xylosyltransferase Responsible for Terminal Modification of Prenylflavonol Glycosides in Epimedium pubescens Maxim.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232416050
. [PMID: 36555695] - Yiwen Mou, Na Liu, Kunyang Su, Xue Li, Tianxiang Lu, Ze Yu, Mingming Song. The growth and lipid accumulation of Scenedesmus quadricauda under nitrogen starvation stress during xylose mixotrophic/heterotrophic cultivation.
Environmental science and pollution research international.
2022 Dec; ?(?):. doi:
10.1007/s11356-022-24579-0
. [PMID: 36502485] - Yugui Zhang, Jiangtao Niu, Shujuan Zhang, Xinlei Si, Tian-Tian Bian, Hongwei Wu, Donghui Li, Yujing Sun, Jing Jia, Erdan Xin, Xingke Yan, Yuefeng Li. Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis.
Pharmaceutical biology.
2022 Dec; 60(1):1237-1254. doi:
10.1080/13880209.2022.2086990
. [PMID: 35763552] - Shirley A Micallef, Sanghyun Han, Louisa Martinez. Tomato Cultivar Nyagous Fruit Surface Metabolite Changes during Ripening Affect Salmonella Newport.
Journal of food protection.
2022 11; 85(11):1604-1613. doi:
10.4315/jfp-22-160
. [PMID: 36048925] - Katarzyna Drzymała-Kapinos, Aleksandra M Mirończuk, Adam Dobrowolski. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
Microbial cell factories.
2022 Oct; 21(1):226. doi:
10.1186/s12934-022-01951-w
. [PMID: 36307797] - Tunyaboon Laemthong, Ryan G Bing, James R Crosby, Michael W W Adams, Robert M Kelly. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
Applied and environmental microbiology.
2022 10; 88(20):e0127422. doi:
10.1128/aem.01274-22
. [PMID: 36169328] - Anjali Zaveri, Jacqueline Edwards, Simone Rochfort. Production of Primary Metabolites by Rhizopus stolonifer, Causal Agent of Almond Hull Rot Disease.
Molecules (Basel, Switzerland).
2022 Oct; 27(21):. doi:
10.3390/molecules27217199
. [PMID: 36364023] - Wenliang Feng, Xuebin Jiang, Rujiang Zhang, Zhendong Guo, Daiquan Gao. Diagnosis of an Acinetobacter pittii from a patient in China with a multiplex PCR-based targeted gene sequencing platform of the cerebrospinal fluid: A case report with literature review.
Medicine.
2022 Oct; 101(42):e31130. doi:
10.1097/md.0000000000031130
. [PMID: 36281177] - Zherui Chen, Baojie Zhu, Xin Peng, Shaoping Li, Jing Zhao. Quality Evaluation of Ophiopogon japonicus from Two Authentic Geographical Origins in China Based on Physicochemical and Pharmacological Properties of Their Polysaccharides.
Biomolecules.
2022 Oct; 12(10):. doi:
10.3390/biom12101491
. [PMID: 36291700] - Yu Gong, Wei Luo, Hulan Chen, Bo Ren, Weicheng Hu, Limei Li. Systematical Ingredient Investigations of Ficus tikoua Bur. Fruit and Immunoregulatory and Antioxidant Effects of Different Fractions.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206880
. [PMID: 36296474] - Barbora Stratilová, Eva Stratilová, Maria Hrmova, Stanislav Kozmon. Definition of the Acceptor Substrate Binding Specificity in Plant Xyloglucan Endotransglycosylases Using Computational Chemistry.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911838
. [PMID: 36233140] - Yang Yu, Shuangmei Liu, Yuwei Zhang, Minrui Lu, Yuanyuan Sha, Rui Zhai, Zhaoxian Xu, Mingjie Jin. A novel fermentation strategy for efficient xylose utilization and microbial lipid production in lignocellulosic hydrolysate.
Bioresource technology.
2022 Oct; 361(?):127624. doi:
10.1016/j.biortech.2022.127624
. [PMID: 35872269] - Chuyin Qiu, Weiting He, Yu Li, Feng Jiang, Yang Pan, Meihui Zhang, Daying Lin, Kaili Zhang, Yanduo Yang, Wen Wang, Pei Hua. Formation of halogenated disinfection byproducts in chlorinated real water during making hot beverage: Effect of sugar addition.
Chemosphere.
2022 Oct; 305(?):135417. doi:
10.1016/j.chemosphere.2022.135417
. [PMID: 35750228] - Haitao Jiang, Hua Zhu, Guangming Huo, Shengjie Li, Yulong Wu, Feng Zhou, Chun Hua, Qiuhui Hu. Oudemansiella raphanipies Polysaccharides Improve Lipid Metabolism Disorders in Murine High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194092
. [PMID: 36235744] - Siya Wu, Jian Liu, Ya Zhang, Jianxi Song, Zhongshan Zhang, Yue Yang, Mingjiang Wu, Haibin Tong. Structural characterization and antagonistic effect against P-selectin-mediated function of SFF-32, a fucoidan fraction from Sargassum fusiforme.
Journal of ethnopharmacology.
2022 Sep; 295(?):115408. doi:
10.1016/j.jep.2022.115408
. [PMID: 35659565] - Linnea Qvirist, Friederike Mierke, Ricardo Vazquez Juarez, Thomas Andlid. Screening of xylose utilizing and high lipid producing yeast strains as a potential candidate for industrial application.
BMC microbiology.
2022 07; 22(1):173. doi:
10.1186/s12866-022-02586-y
. [PMID: 35799117] - Y U Zeyue, Hao Liyu, L I Zongyuan, Sun Jianhui, Chen Hongying, Huo Hairu, L I Xiaoqin, Shan Zhongchao, L I Hongmei. Correlation between slow transit constipation and spleen deficiency, and gut microbiota: a pilot study.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 06; 42(3):353-363. doi:
10.19852/j.cnki.jtcm.20220408.002
. [PMID: 35610004] - Choy Yee Hui, Kok Chang Lee, Ying Ping Chang. Cellulase-Xylanase-Treated Guava Purée by-Products as Prebiotics Ingredients in Yogurt.
Plant foods for human nutrition (Dordrecht, Netherlands).
2022 Jun; 77(2):299-306. doi:
10.1007/s11130-022-00981-4
. [PMID: 35661961] - Shailja Pant, Ritika, Anand Prakash, Arindam Kuila. Integrated production of ethanol and xylitol from Brassica juncea using Candida sojae JCM 1644.
Bioresource technology.
2022 May; 351(?):126903. doi:
10.1016/j.biortech.2022.126903
. [PMID: 35227916] - Ling-Ru Wang, Zi-Xu Zhang, Yu-Zhou Wang, Zi-Jia Li, Peng-Wei Huang, Xiao-Man Sun. Assessing the potential of Schizochytrium sp. HX-308 for microbial lipids production from corn stover hydrolysate.
Biotechnology journal.
2022 May; 17(5):e2100470. doi:
10.1002/biot.202100470
. [PMID: 35072339] - Zuoyong Zhang, Shudong He, Luji Zhang, Xinjiang Li, Risheng Jin, Qian Liu, Shuguan Chen, Junhui Wang, Hanju Sun. The potential application of vegetable oils in the D-xylose and L-cysteine Maillard reaction system for meaty aroma production.
Food research international (Ottawa, Ont.).
2022 05; 155(?):111081. doi:
10.1016/j.foodres.2022.111081
. [PMID: 35400457] - Nan Ruan, Zhengjun Dang, Meihan Wang, Liyu Cao, Ye Wang, Sitong Liu, Yijun Tang, Yuwei Huang, Qun Zhang, Quan Xu, Wenfu Chen, Fengcheng Li. FRAGILE CULM 18 encodes a UDP-glucuronic acid decarboxylase required for xylan biosynthesis and plant growth in rice.
Journal of experimental botany.
2022 04; 73(8):2320-2335. doi:
10.1093/jxb/erac036
. [PMID: 35104839] - Xuwei Liu, Jiayi Li, Agnès Rolland-Sabaté, Serge Perez, Carine Le Bourvellec, Catherine M G C Renard. Experimental and theoretical investigation on interactions between xylose-containing hemicelluloses and procyanidins.
Carbohydrate polymers.
2022 Apr; 281(?):119086. doi:
10.1016/j.carbpol.2021.119086
. [PMID: 35074113] - Pattanan Songdech, Rawitsara Intasit, Yodying Yingchutrakul, Chutikarn Butkinaree, Khanok Ratanakhanokchai, Nitnipa Soontorngun. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene.
Microbial cell factories.
2022 Mar; 21(1):32. doi:
10.1186/s12934-022-01757-w
. [PMID: 35248023] - Nam Kyu Kang, Jae Won Lee, Donald R Ort, Yong-Su Jin. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
Biotechnology journal.
2022 Mar; 17(3):e2000431. doi:
10.1002/biot.202000431
. [PMID: 34390209] - Li Mei, Fang Wang, Ming Yang, Zhiyong Liu, Liangfeng Wang, Qingyao Chen, Fengqin Li, Xiaofei Zhang. Studies on the Mechanism of the Volatile Oils from Caoguo-4 Decoction in Regulating Spleen Deficiency Diarrhea by Adjusting Intestinal Microbiota.
Oxidative medicine and cellular longevity.
2022; 2022(?):5559151. doi:
10.1155/2022/5559151
. [PMID: 35126816] - Jiali Meng, Tania Chroumpi, Miia R Mäkelä, Ronald P de Vries. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering.
Bioresource technology.
2022 Jan; 344(Pt A):126199. doi:
10.1016/j.biortech.2021.126199
. [PMID: 34710597] - Julia Jansing, Luisa Bortesi. Knockout of Glycosyltransferases in Nicotiana benthamiana by Genome Editing to Improve Glycosylation of Plant-Produced Proteins.
Methods in molecular biology (Clifton, N.J.).
2022; 2480(?):241-284. doi:
10.1007/978-1-0716-2241-4_14
. [PMID: 35616867] - Helberth Júnnior Santos Lopes, Nemailla Bonturi, Everson Alves Miranda. Induction of resistance mechanisms in Rhodotorula toruloides for growth in sugarcane hydrolysate with high inhibitor content.
Applied microbiology and biotechnology.
2021 Dec; 105(24):9261-9272. doi:
10.1007/s00253-021-11687-z
. [PMID: 34761276] - Ramkrishna Singh, Hui Liu, John Shanklin, Vijay Singh. Hydrothermal pretreatment for valorization of genetically engineered bioenergy crop for lipid and cellulosic sugar recovery.
Bioresource technology.
2021 Dec; 341(?):125817. doi:
10.1016/j.biortech.2021.125817
. [PMID: 34454236] - Puangpen Limsakul, Paripok Phitsuwan, Rattiya Waeonukul, Patthra Pason, Chakrit Tachaapaikoon, Kanokwan Poomputsa, Akihiko Kosugi, Khanok Ratanakhanokchai. A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
Applied and environmental microbiology.
2021 11; 87(24):e0173021. doi:
10.1128/aem.01730-21
. [PMID: 34613758] - Daniel P Brink, Celina Borgström, Viktor C Persson, Karen Ofuji Osiro, Marie F Gorwa-Grauslund. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212410
. [PMID: 34830296] - Arumugam Nagarajan, Boobalan Thulasinathan, Pugazhendhi Arivalagan, Arun Alagarsamy, Jothi Basu Muthuramalingam, Suganya Devi Thangarasu, Kavitha Thangavel. Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica.
Bioresource technology.
2021 Nov; 340(?):125677. doi:
10.1016/j.biortech.2021.125677
. [PMID: 34358990] - Sae-Byuk Lee, Mary Tremaine, Michael Place, Lisa Liu, Austin Pier, David J Krause, Dan Xie, Yaoping Zhang, Robert Landick, Audrey P Gasch, Chris Todd Hittinger, Trey K Sato. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.
Metabolic engineering.
2021 11; 68(?):119-130. doi:
10.1016/j.ymben.2021.09.008
. [PMID: 34592433] - Tania Chroumpi, Mao Peng, Maria Victoria Aguilar-Pontes, Astrid Müller, Mei Wang, Juying Yan, Anna Lipzen, Vivian Ng, Igor V Grigoriev, Miia R Mäkelä, Ronald P de Vries. Revisiting a 'simple' fungal metabolic pathway reveals redundancy, complexity and diversity.
Microbial biotechnology.
2021 11; 14(6):2525-2537. doi:
10.1111/1751-7915.13790
. [PMID: 33666344] - Nurzhan Kuanyshev, Anshu Deewan, Sujit Sadashiv Jagtap, Jingjing Liu, Balaji Selvam, Li-Qing Chen, Diwakar Shukla, Christopher V Rao, Yong-Su Jin. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously.
Biotechnology journal.
2021 Nov; 16(11):e2100238. doi:
10.1002/biot.202100238
. [PMID: 34418308] - Christiane Liers, René Ullrich, Harald Kellner, Do Huu Chi, Dang Thu Quynh, Nguyen Dinh Luyen, Le Mai Huong, Martin Hofrichter, Do Huu Nghi. Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates.
Journal of microbiology and biotechnology.
2021 Oct; 31(10):1438-1445. doi:
10.4014/jmb.2106.06053
. [PMID: 34409952] - Meilin Kong, Xiaowei Li, Tongtong Li, Xuebing Zhao, Mingjie Jin, Xin Zhou, Hanqi Gu, Vladimir Mrša, Wei Xiao, Limin Cao. Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates.
Bioresource technology.
2021 Oct; 337(?):125487. doi:
10.1016/j.biortech.2021.125487
. [PMID: 34320766] - Thi Bich Huong Duong, Prattana Ketbot, Paripok Phitsuwan, Rattiya Waeonukul, Chakrit Tachaapaikoon, Akihiko Kosugi, Khanok Ratanakhanokchai, Patthra Pason. Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1.
Journal of microbiology and biotechnology.
2021 Sep; 31(9):1262-1271. doi:
10.4014/jmb.2105.05044
. [PMID: 34261852] - Pamela Canaviri-Paz, Elin Oscarsson, Anna Kjellström, Hanna Olsson, Chandana Jois, Åsa Håkansson. Effects on Microbiota Composition after Consumption of Quinoa Beverage Fermented by a Novel Xylose-Metabolizing L. plantarum Strain.
Nutrients.
2021 Sep; 13(10):. doi:
10.3390/nu13103318
. [PMID: 34684319] - Tapan Behl, Amit Gupta, Aayush Sehgal, Sanchay Sharma, Sukhbir Singh, Neelam Sharma, Camelia Cristina Diaconu, Abbas Rahdar, Abdul Hafeez, Saurabh Bhatia, Ahmed Al-Harrasi, Simona Bungau. A spotlight on underlying the mechanism of AMPK in diabetes complications.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2021 Sep; 70(9):939-957. doi:
10.1007/s00011-021-01488-5
. [PMID: 34319417] - Liang Sun, Jae Won Lee, Sangdo Yook, Stephan Lane, Ziqiao Sun, Soo Rin Kim, Yong-Su Jin. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast.
Nature communications.
2021 08; 12(1):4975. doi:
10.1038/s41467-021-25241-y
. [PMID: 34404791] - Justyna Ruchala, Andriy A Sibirny. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
FEMS microbiology reviews.
2021 08; 45(4):. doi:
10.1093/femsre/fuaa069
. [PMID: 33316044] - Aleksandra Vojvodić Cebin, Marie-Christine Ralet, Jacqueline Vigouroux, Sara Karača, Arijana Martinić, Draženka Komes, Estelle Bonnin. Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides.
Carbohydrate polymers.
2021 Jul; 263(?):117932. doi:
10.1016/j.carbpol.2021.117932
. [PMID: 33858566] - Xinyi Zan, Jianing Sun, Linfang Chu, Fengjie Cui, Shuhao Huo, Yuanda Song, Mattheos A G Koffas. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides.
Applied microbiology and biotechnology.
2021 Jul; 105(13):5565-5575. doi:
10.1007/s00253-021-11392-x
. [PMID: 34215904] - Igor A Podolsky, Susanna Seppälä, Haiqing Xu, Yong-Su Jin, Michelle A O'Malley. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast.
Metabolic engineering.
2021 07; 66(?):137-147. doi:
10.1016/j.ymben.2021.04.009
. [PMID: 33887459] - Raphael Gabriel, Nils Thieme, Qian Liu, Fangya Li, Lisa T Meyer, Simon Harth, Marina Jecmenica, Maya Ramamurthy, Jennifer Gorman, Blake A Simmons, Kevin McCluskey, Scott E Baker, Chaoguang Tian, Timo Schuerg, Steven W Singer, André Fleißner, J Philipp Benz. The F-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi.
Proceedings of the National Academy of Sciences of the United States of America.
2021 06; 118(26):. doi:
10.1073/pnas.2025689118
. [PMID: 34168079] - Kaustubh Chandrakant Khaire, Kedar Sharma, Abhijeet Thakur, Vijayanand Suryakant Moholkar, Arun Goyal. Extraction and characterization of xylan from sugarcane tops as a potential commercial substrate.
Journal of bioscience and bioengineering.
2021 Jun; 131(6):647-654. doi:
10.1016/j.jbiosc.2021.01.009
. [PMID: 33676868] - Lorena Donzella, Javier A Varela, Maria João Sousa, John P Morrissey. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform.
FEMS yeast research.
2021 05; 21(4):. doi:
10.1093/femsyr/foab026
. [PMID: 33890624] - Chen Chen, Xianhai Zhao, Xuchuan Wang, Bo Wang, Huiling Li, Jiaxun Feng, Aimin Wu. Mutagenesis of UDP-xylose epimerase and xylan arabinosyl-transferase decreases arabinose content and improves saccharification of rice straw.
Plant biotechnology journal.
2021 05; 19(5):863-865. doi:
10.1111/pbi.13552
. [PMID: 33471384]