Benzoyl-CoA (BioDeep_00000004266)
Secondary id: BioDeep_00001869058
human metabolite Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C28H40N7O17P3S (871.141418)
中文名称:
谱图信息:
最多检出来源 Macaca mulatta(otcml) 4.55%
分子结构信息
SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)C4=CC=CC=C4)O
InChI: InChI=1S/C28H40N7O17P3S/c1-28(2,22(38)25(39)31-9-8-18(36)30-10-11-56-27(40)16-6-4-3-5-7-16)13-49-55(46,47)52-54(44,45)48-12-17-21(51-53(41,42)43)20(37)26(50-17)35-15-34-19-23(29)32-14-33-24(19)35/h3-7,14-15,17,20-22,26,37-38H,8-13H2,1-2H3,(H,30,36)(H,31,39)(H,44,45)(H,46,47)(H2,29,32,33)(H2,41,42,43)
描述信息
Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. [HMDB]. Benzoyl-CoA is found in many foods, some of which are malabar plum, barley, vanilla, and banana.
Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. Benzoyl-CoA is a microbial metabolite that can be found in Streptomyces (PMID: 12511484).
同义名列表
11 个代谢物同义名
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(benzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid; Benzoyl-coenzyme A, 14C-labeled; S-Benzoic acid coenzyme A; S-Benzoate coenzyme A; Benzoyl-S-coenzyme A; S-Benzoyl-coenzyme A; Benzoyl-coenzyme A; Benzoyl coenzyme A; Benzoyl CoA; Benzoyl-coa; Benzoyl-CoA
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:15515
- KEGG: C00512
- PubChem: 9543169
- PubChem: 4363644
- HMDB: HMDB0002252
- Metlin: METLIN6574
- Wikipedia: Benzoyl-CoA
- MetaCyc: BENZOYLCOA
- foodb: FDB022929
- chemspider: 7822142
- CAS: 6756-74-7
- PMhub: MS000016219
- PubChem: 3795
- PDB-CCD: BYC
- 3DMET: B04692
- NIKKAJI: J397.338G
- KNApSAcK: 15515
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
17 个相关的代谢反应过程信息。
Reactome(12)
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
BioCyc(3)
- phenylacetate degradation II (anaerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- anthranilate degradation III (anaerobic):
ATP + anthranilate + coenzyme A ⟶ 2-aminobenzoyl-CoA + AMP + H+ + diphosphate
- benzoyl-CoA degradation I (aerobic):
2,3-dihydro-2,3-dihydroxybenzoyl-CoA + H2O + H+ ⟶ 3,4-dehydroadipyl-CoA semialdehyde + formate
WikiPathways(2)
- Amino acid conjugation of benzoic acid:
Benzoic acid AMP ester ⟶ AMP
- Amino acid conjugation of benzoic acid:
benzoyl-AMP ⟶ AMP
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 115828 - Streptomyces maritimus: 10.1016/S0040-4020(00)00765-1
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Poonam Singh, Lutz Preu, Till Beuerle, David Kaufholdt, Robert Hänsch, Ludger Beerhues, Mariam Gaid. A promiscuous coenzyme A ligase provides benzoyl-coenzyme A for xanthone biosynthesis in Hypericum.
The Plant journal : for cell and molecular biology.
2020 12; 104(6):1472-1490. doi:
10.1111/tpj.15012
. [PMID: 33031578] - David Sanz, José L García, Eduardo Díaz. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway.
Environmental microbiology.
2020 08; 22(8):3478-3493. doi:
10.1111/1462-2920.15119
. [PMID: 32510798] - Xiaoguang Yan, Xiaoyu Qin, Weiguo Li, Dongmei Liang, Jianjun Qiao, Yanni Li. Functional characterization and catalytic activity improvement of BAHD acyltransferase from Celastrus angulatus Maxim.
Planta.
2020 Jun; 252(1):6. doi:
10.1007/s00425-020-03413-2
. [PMID: 32556997] - Kamal Adhikari, I-Wen Lo, Chun-Liang Chen, Yung-Lin Wang, Kuan-Hung Lin, Saeid Malek Zadeh, Rajesh Rattinam, Yi-Shan Li, Chang-Jer Wu, Tsung-Lin Li. Chemoenzymatic Synthesis and Biological Evaluation for Bioactive Molecules Derived from Bacterial Benzoyl Coenzyme A Ligase and Plant Type III Polyketide Synthase.
Biomolecules.
2020 05; 10(5):. doi:
10.3390/biom10050738
. [PMID: 32397467] - Shashank Sagar Saini, Mariam Gaid, Debabrata Sircar. Benzoate-CoA ligase contributes to the biosynthesis of biphenyl phytoalexins in elicitor-treated pear cell cultures.
Plant cell reports.
2020 Feb; 39(2):207-215. doi:
10.1007/s00299-019-02484-0
. [PMID: 31713663] - Gonzalo Durante-Rodríguez, Paloma Gutiérrez-Del-Arroyo, Marisela Vélez, Eduardo Díaz, Manuel Carmona. Further Insights into the Architecture of the PN Promoter That Controls the Expression of the bzd Genes in Azoarcus.
Genes.
2019 06; 10(7):. doi:
10.3390/genes10070489
. [PMID: 31252700] - Noemi Tocci, Mariam Gaid, Filip Kaftan, Asma K Belkheir, Ines Belhadj, Benye Liu, Aleš Svatoš, Robert Hänsch, Gabriella Pasqua, Ludger Beerhues. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots.
The New phytologist.
2018 02; 217(3):1099-1112. doi:
10.1111/nph.14929
. [PMID: 29210088] - Charles Stewart, Kate Woods, Greg Macias, Andrew C Allan, Roger P Hellens, Joseph P Noel. Molecular architectures of benzoic acid-specific type III polyketide synthases.
Acta crystallographica. Section D, Structural biology.
2017 Dec; 73(Pt 12):1007-1019. doi:
10.1107/s2059798317016618
. [PMID: 29199980] - Shashank Sagar Saini, Deepa Teotia, Mariam Gaid, Anirudh Thakur, Ludger Beerhues, Debabrata Sircar. Benzaldehyde dehydrogenase-driven phytoalexin biosynthesis in elicitor-treated Pyrus pyrifolia cell cultures.
Journal of plant physiology.
2017 Aug; 215(?):154-162. doi:
10.1016/j.jplph.2017.06.004
. [PMID: 28647601] - Russell J Chedgy, Tobias G Köllner, C Peter Constabel. Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis.
Phytochemistry.
2015 May; 113(?):149-59. doi:
10.1016/j.phytochem.2014.10.018
. [PMID: 25561400] - Christopher A Gulvik, Alison Buchan. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.
Applied and environmental microbiology.
2013 Jun; 79(12):3716-23. doi:
10.1128/aem.00405-13
. [PMID: 23563956] - Kathleen Trautwein, Heinz Wilkes, Ralf Rabus. Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in "Aromatoleum aromaticum" EbN1.
Proteomics.
2012 May; 12(9):1402-13. doi:
10.1002/pmic.201100279
. [PMID: 22589189] - Moe Matsuo, Kensuke Terai, Noriaki Kameda, Aya Matsumoto, Yumiko Kurokawa, Yuichi Funase, Kazuko Nishikawa, Naoki Sugaya, Nobuyuki Hiruta, Toshihiko Kishimoto. Designation of enzyme activity of glycine-N-acyltransferase family genes and depression of glycine-N-acyltransferase in human hepatocellular carcinoma.
Biochemical and biophysical research communications.
2012 Apr; 420(4):901-6. doi:
10.1016/j.bbrc.2012.03.099
. [PMID: 22475485] - Liv J Rather, Eckhard Bill, Wael Ismail, Georg Fuchs. The reducing component BoxA of benzoyl-coenzyme A epoxidase from Azoarcus evansii is a [4Fe-4S] protein.
Biochimica et biophysica acta.
2011 Dec; 1814(12):1609-15. doi:
10.1016/j.bbapap.2011.05.023
. [PMID: 21672639] - Jinglin Li, Yunzi Luo, Jung-Kul Lee, Huimin Zhao. Cloning and characterization of a type III polyketide synthase from Aspergillus niger.
Bioorganic & medicinal chemistry letters.
2011 Oct; 21(20):6085-9. doi:
10.1016/j.bmcl.2011.08.058
. [PMID: 21903388] - Ikuro Abe, Yusuke Takahashi, Weiwei Lou, Hiroshi Noguchi. Enzymatic formation of unnatural novel polyketides from alternate starter and nonphysiological extension substrate by chalcone synthase.
Organic letters.
2003 Apr; 5(8):1277-80. doi:
10.1021/ol0300165
. [PMID: 12688738] - Bradley S Moore, Christian Hertweck, Jörn N Hopke, Miho Izumikawa, John A Kalaitzis, George Nilsen, Thomas O'Hare, Jörn Piel, Paul R Shipley, Longkuan Xiang, Michael B Austin, Joseph P Noel. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone.
Journal of natural products.
2002 Dec; 65(12):1956-62. doi:
10.1021/np020230m
. [PMID: 12502351] - Till Beuerle, Eran Pichersky. Enzymatic synthesis and purification of aromatic coenzyme a esters.
Analytical biochemistry.
2002 Mar; 302(2):305-12. doi:
10.1006/abio.2001.5574
. [PMID: 11878812] - M Kelley, D A Vessey. Isolation and characterization of mitochondrial acyl-CoA: glycine N-acyltransferases from kidney.
Journal of biochemical toxicology.
1993 Jun; 8(2):63-9. doi:
10.1002/jbt.2570080203
. [PMID: 8355261]