Gluconolactone (BioDeep_00000002871)
Secondary id: BioDeep_00000269279, BioDeep_00000419034
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H10O6 (178.04773600000001)
中文名称: d-葡糖酸内酯, D-葡糖酸内酯, 葡萄糖酸内酯
谱图信息:
最多检出来源 Homo sapiens(blood) 0.1%
分子结构信息
SMILES: C(C1C(C(C(C(=O)O1)O)O)O)O
InChI: InChI=1/C6H10O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-5,7-10H,1H2/t2-,3-,4+,5-/m1/s1
描述信息
Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar.
Food additive; uses include acidifier, pH control agent, sequestrant
C26170 - Protective Agent > C275 - Antioxidant
D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
同义名列表
66 个代谢物同义名
(3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-one; (3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-one; 3,4,5-Trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-one; D-(+)-Gluconic acid γ-lactone-purum; delta-(+)-Gluconic acid D-lactone; D-(+)-Gluconic acid delta-lactone; D-(+)-Gluconic acid-delta lactone; delta-Gluconic acid-1,5-lactone; delta-Gluconic acid 1,5-lactone; D-(+)-Gluconic acid D-lactone; D-(+)-Gluconic acid δ-lactone; D-Gluconic acid-delta-lactone; D-Gluconic acid delta-lactone; delta-Gluconic acid D-lactone; D-(+)-Glucono-delta-lactone; D-(+)-Glucose delta-lactone; delta-Gluconic acid lactone; D-Gluconic acid 1,5-lactone; D-Gluconic acid-1,5-lactone; D-threo-aldono-1,5-Lactone; D-Gluconate delta-lactone; D-Gluconic acid D-lactone; d-(+)-glucono-1,5-lactone; delta-Glucono-1,5-lactone; D-Gluconic acid δ-lactone; D-Gluconic delta-lactone; 1,5-delta-Gluconolactone; D-Gluconic acid lactone; D-(+)-Glucono-δ-lactone; D-(+)-Glucose δ-lactone; D-Glucono-delta-lactone; δ-Gluconolactone; D-delta-Gluconolactone; delta-D-Gluconolactone; Gluconic delta-lactone; D-Glucono-1,5-lactone; Glucono delta lactone; Glucono-delta-lactone; D-Gluconate δ-lactone; Glucono delta-lactone; Gluconic acid lactone; 1,5-D-Gluconolactone; Delta-Gluconolactone; Glucono 1,5-lactone; D-glucono-D-Lactone; D-Glucono-δ-lactone; delta-Aldonolactone; D-Gluconate lactone; δ-D-gluconolactone; Gluconic δ-lactone; 1,5-Gluconolactone; Gluconate, lactone; Glucono-δ-lactone; Gluconate lactone; δ-Gluconolactone; Gluconic lactone; D-Gluconolactone; GDL (Gluconate); D-Aldonolactone; Glucarolactone; Gluconolactone; Fujiglucon; Lysactone; D-Gluconolactone; D-Glucono-1,5-lactone; D-Gluconic acid, ?lactone
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:16217
- ChEBI: CHEBI:24267
- KEGG: C00198
- KEGGdrug: D04332
- PubChem: 7027
- PubChem: 736
- HMDB: HMDB0000150
- Metlin: METLIN353
- DrugBank: DB04564
- ChEMBL: CHEMBL1200829
- Wikipedia: Gluconolactone
- MetaCyc: GLC-D-LACTONE
- foodb: FDB001245
- chemspider: 6760
- CAS: 135820-79-0
- CAS: 1335-57-5
- CAS: 4253-68-3
- CAS: 90-80-2
- MoNA: PS020803
- PMhub: MS000006738
- PubChem: 3498
- PDB-CCD: LGC
- 3DMET: B01186
- NIKKAJI: J1.174F
- RefMet: Gluconolactone
- medchemexpress: HY-I0301
- KNApSAcK: 16217
- LOTUS: LTS0250595
分类词条
相关代谢途径
Reactome(0)
BioCyc(11)
- vicianin bioactivation
- linamarin degradation
- linustatin bioactivation
- esculetin modification
- Entner-Doudoroff pathway II (non-phosphorylative)
- Entner-Doudoroff pathway III (semi-phosphorylative)
- glucose degradation (oxidative)
- glucose and glucose-1-phosphate degradation
- coniferin metabolism
- daphnin interconversion
- cichoriin interconversion
PlantCyc(6)
代谢反应
175 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(37)
- L-ascorbate biosynthesis VI (engineered pathway):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
D-glucopyranose + keto-D-fructose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- Entner-Doudoroff pathway II (non-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- Entner-Doudoroff pathway III (semi-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- Entner-Doudoroff pathway II (non-phosphorylative):
α-D-glucose ⟶ β-D-glucose
WikiPathways(0)
Plant Reactome(0)
INOH(2)
- Pentose phosphate cycle ( Pentose phosphate cycle ):
ATP + D-Ribose 5-phosphate ⟶ AMP + D-5-Phospho-ribosyl 1-diphosphate
- NADP+ + D-Glucose = NADPH + D-Glucono-1,5-lactone ( Pentose phosphate cycle ):
D-Glucose + NADP+ ⟶ D-Glucono-1,5-lactone + NADPH
PlantCyc(121)
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
COVID-19 Disease Map(0)
PathBank(15)
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Pentose Phosphate Pathway:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Glucose-6-phosphate Dehydrogenase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Ribose-5-phosphate Isomerase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
- Transaldolase Deficiency:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Phosphoribosyl pyrophosphate
PharmGKB(0)
58 个相关的物种来源信息
- 3701 - Arabidopsis: LTS0250595
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: LTS0250595
- 6854 - Arachnida: LTS0250595
- 6656 - Arthropoda: LTS0250595
- 40552 - Asparagaceae: LTS0250595
- 3700 - Brassicaceae: LTS0250595
- 7711 - Chordata: LTS0250595
- 33682 - Euglenozoa: LTS0250595
- 2759 - Eukaryota: LTS0250595
- 3803 - Fabaceae: LTS0250595
- 58228 - Garcinia mangostana: 10.1007/S11306-019-1526-1
- 9606 - Homo sapiens: -
- 44985 - Hyacinthaceae: LTS0250595
- 81757 - Hyacinthoides: LTS0250595
- 81762 - Hyacinthoides non-scripta: 10.1038/S41598-019-38940-W
- 81762 - Hyacinthoides non-scripta: LTS0250595
- 5653 - Kinetoplastea: LTS0250595
- 4447 - Liliopsida: LTS0250595
- 3867 - Lotus: LTS0250595
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0250595
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0250595
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0250595
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0250595
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0250595
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0250595
- 3398 - Magnoliopsida: LTS0250595
- 40674 - Mammalia: LTS0250595
- 33208 - Metazoa: LTS0250595
- 10066 - Muridae: LTS0250595
- 10088 - Mus: LTS0250595
- 10090 - Mus musculus: LTS0250595
- 10090 - Mus musculus: NA
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 4070 - Solanaceae: LTS0250595
- 4107 - Solanum: LTS0250595
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0250595
- 35493 - Streptophyta: LTS0250595
- 32262 - Tetranychidae: LTS0250595
- 32263 - Tetranychus: LTS0250595
- 32264 - Tetranychus urticae: 10.1371/JOURNAL.PONE.0054025
- 32264 - Tetranychus urticae: LTS0250595
- 58023 - Tracheophyta: LTS0250595
- 5690 - Trypanosoma: LTS0250595
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0250595
- 5654 - Trypanosomatidae: LTS0250595
- 33090 - Viridiplantae: LTS0250595
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Laura Hanley, Stacie Dobson, Alejandro G Marangoni. Legume milk-based yogurt mimetics structured using glucono-δ-lactone.
Food research international (Ottawa, Ont.).
2024 May; 184(?):114259. doi:
10.1016/j.foodres.2024.114259
. [PMID: 38609239] - Xinran Liu, Jingting Xu, Yue Li, Huiyan Zhao, Shuntang Guo. Mechanism of the glucono-δ-lactone induced soymilk gelation: Enthalpy and entropy transformation in the cross-linking of protein molecules.
Food research international (Ottawa, Ont.).
2023 07; 169(?):112868. doi:
10.1016/j.foodres.2023.112868
. [PMID: 37254317] - Sarah Guidi, Florian A Formica, Christoph Denkel. Mixing plant-based proteins: Gel properties of hemp, pea, lentil proteins and their binary mixtures.
Food research international (Ottawa, Ont.).
2022 11; 161(?):111752. doi:
10.1016/j.foodres.2022.111752
. [PMID: 36192925] - Rebekka Thøgersen, Kristian Leth Egsgaard, Louise Kjølbæk, Klaus Juhl Jensen, Arne Astrup, Marianne Hammershøj, Anne Raben, Hanne Christine Bertram. Effect of Dairy Matrix on the Postprandial Blood Metabolome.
Nutrients.
2021 Nov; 13(12):. doi:
10.3390/nu13124280
. [PMID: 34959831] - Karl D Brune, Ilva Liekniņa, Grigorij Sutov, Alexander R Morris, Dejana Jovicevic, Gints Kalniņš, Andris Kazāks, Rihards Kluga, Sabine Kastaljana, Anna Zajakina, Juris Jansons, Dace Skrastiņa, Karīna Spunde, Alexander A Cohen, Pamela J Bjorkman, Howard R Morris, Edgars Suna, Kaspars Tārs. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone.
Chembiochem : a European journal of chemical biology.
2021 11; 22(22):3199-3207. doi:
10.1002/cbic.202100381
. [PMID: 34520613] - Sylwia Jarząbek-Perz, Paulina Mucha, Helena Rotsztejn. Corneometric evaluation of skin moisture after application of 10\% and 30\% gluconolactone.
Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI).
2021 Sep; 27(5):925-930. doi:
10.1111/srt.13044
. [PMID: 33769633] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Supaporn Baiya, Salila Pengthaisong, Sunan Kitjaruwankul, James R Ketudat Cairns. Structural analysis of rice Os4BGlu18 monolignol β-glucosidase.
PloS one.
2021; 16(1):e0241325. doi:
10.1371/journal.pone.0241325
. [PMID: 33471829] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Ryo Adachi, Motofusa Akiyama, Yoshitsugu Morita, Teruyuki Komatsu. Stratiform Protein Microtube Reactors Containing Glucose Oxidase Layer.
Chemistry, an Asian journal.
2018 Oct; 13(19):2796-2799. doi:
10.1002/asia.201800927
. [PMID: 30003710] - Natalia Montellano Duran, Micaela Galante, Darío Spelzini, Valeria Boeris. The effect of carrageenan on the acid-induced aggregation and gelation conditions of quinoa proteins.
Food research international (Ottawa, Ont.).
2018 05; 107(?):683-690. doi:
10.1016/j.foodres.2018.03.015
. [PMID: 29580535] - Emily A Growney Kalaf, Reynaldo Flores, J Gary Bledsoe, Scott A Sell. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications.
Materials science & engineering. C, Materials for biological applications.
2016 Jun; 63(?):198-210. doi:
10.1016/j.msec.2016.02.067
. [PMID: 27040212] - Quanbing Mou, Yuan Ma, Xinyuan Zhu, Deyue Yan. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.
Journal of controlled release : official journal of the Controlled Release Society.
2016 05; 230(?):34-44. doi:
10.1016/j.jconrel.2016.03.037
. [PMID: 27040815] - H Eshpari, R Jimenez-Flores, P S Tong, M Corredig. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.
Journal of dairy science.
2015 Dec; 98(12):8454-63. doi:
10.3168/jds.2015-9856
. [PMID: 26454287] - Md Maroof Alam, Irshad Ahmad, Imrana Naseem. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.
International journal of biological macromolecules.
2015 Aug; 79(?):336-43. doi:
10.1016/j.ijbiomac.2015.05.004
. [PMID: 25982953] - A E Fayed, Azza M Farahat, A E Metwally, M S Massoud And A O Emam. Health stimulating properties of the most popular soft cheese in Egypt Kariesh made using skimmed milk UF-retentate and probiotics.
Acta scientiarum polonorum. Technologia alimentaria.
2014 Oct; 13(4):359-373. doi:
10.17306/j.afs.2014.4.3
. [PMID: 28067478] - Aijun Yang, Andrew T James. Effects of soybean protein composition and processing conditions on silken tofu properties.
Journal of the science of food and agriculture.
2013 Sep; 93(12):3065-71. doi:
10.1002/jsfa.6140
. [PMID: 23512756] - Siddhartha Kumar Mishra, Neelam Singh Sangwan, Rajender Singh Sangwan. Purification and physicokinetic characterization of a gluconolactone inhibition-insensitive β-glucosidase from Andrographis paniculata nees. Leaf.
Preparative biochemistry & biotechnology.
2013; 43(5):481-99. doi:
10.1080/10826068.2012.759966
. [PMID: 23581783] - Jun Zhou, Dianping Tang, Li Hou, Yuling Cui, Huafeng Chen, Guonan Chen. Nanoplatinum-enclosed gold nanocores as catalytically promoted nanolabels for sensitive electrochemical immunoassay.
Analytica chimica acta.
2012 Nov; 751(?):52-8. doi:
10.1016/j.aca.2012.09.004
. [PMID: 23084051] - Jing Zhang, Lingling Wang, Lianguo Shan, Yinmao Wei. [Preparation of multi-hydroxyl molecular-bonded stationary phase for hydrophilic interaction chromatography and its separation property].
Se pu = Chinese journal of chromatography.
2012 Aug; 30(8):804-9. doi:
10.3724/sp.j.1123.2012.03040
. [PMID: 23256383] - Xiangyang Li, Yapeng Fang, Saphwan Al-Assaf, Glyn O Phillips, Xiaolin Yao, Yifeng Zhang, Meng Zhao, Ke Zhang, Fatang Jiang. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram.
Langmuir : the ACS journal of surfaces and colloids.
2012 Jul; 28(27):10164-76. doi:
10.1021/la302063u
. [PMID: 22697399] - Fang Li, Xianzhen Kong, Caimeng Zhang, Yufei Hua. Rheological properties and permeability of soy protein-stabilised emulsion gels made by acidification with glucono-δ-lactone.
Journal of the science of food and agriculture.
2011 Sep; 91(12):2186-91. doi:
10.1002/jsfa.4437
. [PMID: 21656774] - Yan Chen, Jinyan Wang, Xiaobin Jia, Xiaobin Tan, Ming Hu. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo.
Molecules (Basel, Switzerland).
2011 Feb; 16(2):1336-48. doi:
10.3390/molecules16021336
. [PMID: 21285919] - Jian Li, Chuck E Walker, Jon M Faubion. Acidulant and oven type affect total anthocyanin content of blue corn cookies.
Journal of the science of food and agriculture.
2011 Jan; 91(1):38-43. doi:
10.1002/jsfa.4173
. [PMID: 20848670] - Bjørge Westereng, Takuya Ishida, Gustav Vaaje-Kolstad, Miao Wu, Vincent G H Eijsink, Kiyohiko Igarashi, Masahiro Samejima, Jerry Ståhlberg, Svein J Horn, Mats Sandgren. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose.
PloS one.
2011; 6(11):e27807. doi:
10.1371/journal.pone.0027807
. [PMID: 22132148] - L Zejskova, T Jancuskova, K Kotlabova, J Doucha, I Hromadnikova. Feasibility of fetal-derived hypermethylated RASSF1A sequence quantification in maternal plasma--next step toward reliable non-invasive prenatal diagnostics.
Experimental and molecular pathology.
2010 Dec; 89(3):241-7. doi:
10.1016/j.yexmp.2010.09.002
. [PMID: 20868679] - Mohamed B Khadeer Ahamed, Venkatarangaiah Krishna, Chethan J Dandin. In vitro antioxidant and in vivo prophylactic effects of two gamma-lactones isolated from Grewia tiliaefolia against hepatotoxicity in carbon tetrachloride intoxicated rats.
European journal of pharmacology.
2010 Apr; 631(1-3):42-52. doi:
10.1016/j.ejphar.2009.12.034
. [PMID: 20064503] - Yong-Sheng Li, Yun-Dong Du, Ting-Mei Chen, Xiu-Feng Gao. A novel immobilization multienzyme glucose fluorescence capillary biosensor.
Biosensors & bioelectronics.
2010 Feb; 25(6):1382-8. doi:
10.1016/j.bios.2009.10.035
. [PMID: 19939662] - Jean-Pierre Hachem, Truus Roelandt, Nanna Schürer, Xu Pu, Joachim Fluhr, Christina Giddelo, Mao-Qiang Man, Debra Crumrine, Diane Roseeuw, Kenneth R Feingold, Theodora Mauro, Peter M Elias. Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes.
The Journal of investigative dermatology.
2010 Feb; 130(2):500-10. doi:
10.1038/jid.2009.249
. [PMID: 19741713] - Paolo Rossetti, Jorge Bondia, Josep Vehí, Carmine G Fanelli. Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices.
Sensors (Basel, Switzerland).
2010; 10(12):10936-52. doi:
10.3390/s101210936
. [PMID: 22163505] - Alice Harper, Mark R Anderson. Electrochemical glucose sensors--developments using electrostatic assembly and carbon nanotubes for biosensor construction.
Sensors (Basel, Switzerland).
2010; 10(9):8248-74. doi:
10.3390/s100908248
. [PMID: 22163652] - Setsuko Handa, Naoki Maruyama, Akihito Ishigami. Over-expression of Senescence Marker Protein-30 decreases reactive oxygen species in human hepatic carcinoma Hep G2 cells.
Biological & pharmaceutical bulletin.
2009 Oct; 32(10):1645-8. doi:
10.1248/bpb.32.1645
. [PMID: 19801822] - Ge Zhang, Xin-Luan Wang, Hui Sheng, Xin-Hui Xie, Yi-Xin He, Xin-Sheng Yao, Zi-Rong Li, Kwong-Man Lee, Wei He, Kwok-Sui Leung, Ling Qin. Constitutional flavonoids derived from Epimedium dose-dependently reduce incidence of steroid-associated osteonecrosis not via direct action by themselves on potential cellular targets.
PloS one.
2009 Jul; 4(7):e6419. doi:
10.1371/journal.pone.0006419
. [PMID: 19641620] - Fanny Guyomarc'h, Marlène Jemin, Véronique Le Tilly, Marie-Noëlle Madec, Marie-Hélène Famelart. Role of the heat-induced whey protein/kappa-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy.
Journal of agricultural and food chemistry.
2009 Jul; 57(13):5910-7. doi:
10.1021/jf804042k
. [PMID: 19534462] - Christopher J Alteri, Sara N Smith, Harry L T Mobley. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle.
PLoS pathogens.
2009 May; 5(5):e1000448. doi:
10.1371/journal.ppat.1000448
. [PMID: 19478872] - B Mohamed Khadeer Ahamed, Venkatarangaiah Krishna, Kumaraswamy H Malleshappa. In vivo wound healing activity of the methanolic extract and its isolated constituent, gulonic acid gamma-lactone, obtained from Grewia tiliaefolia.
Planta medica.
2009 Apr; 75(5):478-82. doi:
10.1055/s-0029-1185315
. [PMID: 19219758] - Takashi Nakase, Sasitorn Jindamorakot, Shinya Ninomiya, Yumi Imanishi, Hiroko Kawasaki. Candida wancherniae sp. nov. and Candida morakotiae sp. nov., two novel ascomycetous anamorphic yeast species found in Thailand.
The Journal of general and applied microbiology.
2009 Apr; 55(2):93-100. doi:
10.2323/jgam.55.93
. [PMID: 19436126] - Jitendra Kumar, S F D'Souza. Inner epidermis of onion bulb scale: As natural support for immobilization of glucose oxidase and its application in dissolved oxygen based biosensor.
Biosensors & bioelectronics.
2009 Feb; 24(6):1792-5. doi:
10.1016/j.bios.2008.08.022
. [PMID: 18838267] - Don J Durzan. Arginine, scurvy and Cartier's 'tree of life'.
Journal of ethnobiology and ethnomedicine.
2009 Feb; 5(?):5. doi:
10.1186/1746-4269-5-5
. [PMID: 19187550] - Fanny Guyomarc'h, Marie Renan, Marc Chatriot, Valérie Gamerre, Marie-Hélène Famelart. Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates.
Journal of agricultural and food chemistry.
2007 Dec; 55(26):10986-93. doi:
10.1021/jf0722304
. [PMID: 18038987] - Laurence Donato, Marcela Alexander, Douglas G Dalgleish. Acid gelation in heated and unheated milks: interactions between serum protein complexes and the surfaces of casein micelles.
Journal of agricultural and food chemistry.
2007 May; 55(10):4160-8. doi:
10.1021/jf063242c
. [PMID: 17439142] - Kyoko Toda, Kyoko Chiba, Tomotada Ono. Effect of components extracted from okara on the physicochemical properties of soymilk and tofu texture.
Journal of food science.
2007 Mar; 72(2):C108-13. doi:
10.1111/j.1750-3841.2006.00248.x
. [PMID: 17995824] - Dara K Hickey, Kieran N Kilcawley, Tom P Beresford, Martin G Wilkinson. Starter bacteria are the prime agents of lipolysis in cheddar cheese.
Journal of agricultural and food chemistry.
2006 Oct; 54(21):8229-35. doi:
10.1021/jf060819h
. [PMID: 17032033] - Peddyreddy Murali Krishna Reddy, Steven Aibor Dkhar, Ramaswamy Subramanian. Effect of insulin on small intestinal transit in normal mice is independent of blood glucose level.
BMC pharmacology.
2006 Feb; 6(?):4. doi:
10.1186/1471-2210-6-4
. [PMID: 16448577] - R Mizuno, J A Lucey. Effects of two types of emulsifying salts on the functionality of nonfat pasta filata cheese.
Journal of dairy science.
2005 Oct; 88(10):3411-25. doi:
10.3168/jds.s0022-0302(05)73025-3
. [PMID: 16162514] - R M Tomaino, L G Turner, D K Larick. The effect of Lactococcus lactis starter cultures on the oxidative stability of liquid whey.
Journal of dairy science.
2004 Feb; 87(2):300-7. doi:
10.3168/jds.s0022-0302(04)73168-9
. [PMID: 14762072] - Yong Liu, Yan Liu, Yang Dai, Luying Xun, Ming Hu. Enteric disposition and recycling of flavonoids and ginkgo flavonoids.
Journal of alternative and complementary medicine (New York, N.Y.).
2003 Oct; 9(5):631-40. doi:
10.1089/107555303322524481
. [PMID: 14629841] - Alexei V Demchenko, Margreet A Wolfert, Balaji Santhanam, James N Moore, Geert-Jan Boons. Synthesis and biological evaluation of Rhizobium sin-1 lipid A derivatives.
Journal of the American Chemical Society.
2003 May; 125(20):6103-12. doi:
10.1021/ja029316s
. [PMID: 12785841] - T P Guinee, E P Feeney, M A E Auty, P F Fox. Effect of pH and calcium concentration on some textural and functional properties of mozzarella cheese.
Journal of dairy science.
2002 Jul; 85(7):1655-69. doi:
10.3168/jds.s0022-0302(02)74238-0
. [PMID: 12201515] - S Rahbar, K K Yerneni, S Scott, N Gonzales, I Lalezari. Novel inhibitors of advanced glycation endproducts (part II).
Molecular cell biology research communications : MCBRC.
2000 Jun; 3(6):360-6. doi:
10.1006/mcbr.2000.0239
. [PMID: 11032758] - S Greubel. [Isotonic beverages, 'energy' and 'power' drinks].
Medizinische Monatsschrift fur Pharmazeuten.
1998 Nov; 21(11):353-5. doi:
"
. [PMID: 9835722] - R Chambrey, J M Achard, P L St John, D R Abrahamson, D G Warnock. Evidence for an amiloride-insensitive Na+/H+ exchanger in rat renal cortical tubules.
The American journal of physiology.
1997 Sep; 273(3 Pt 1):C1064-74. doi:
10.1152/ajpcell.1997.273.3.c1064
. [PMID: 9316428] - M G Botti, M G Taylor, N P Botting. Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity.
The Journal of biological chemistry.
1995 Sep; 270(35):20530-5. doi:
10.1074/jbc.270.35.20530
. [PMID: 7657629] - S Rakotomanga, A Baillet, F Pellerin, D Baylocq-Ferrier. Simultaneous determination of gluconolactone, galactonolactone and galactitol in urine by reversed-phase liquid chromatography: application to galactosemia.
Journal of chromatography.
1991 Oct; 570(2):277-84. doi:
10.1016/0378-4347(91)80530-p
. [PMID: 1797843] - I Pócsi, L Kiss. Kinetic studies on the broad-specificity beta-D-glucosidase from pig kidney.
The Biochemical journal.
1988 Nov; 256(1):139-46. doi:
10.1042/bj2560139
. [PMID: 3146970] - C P Kubicek. Involvement of a conidial endoglucanase and a plasma-membrane-bound beta-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei.
Journal of general microbiology.
1987 Jun; 133(6):1481-7. doi:
10.1099/00221287-133-6-1481
. [PMID: 3117961] - . .
.
. doi:
. [PMID: 11730862]