Sphingosine (BioDeep_00000001343)

 

Secondary id: BioDeep_00000405230, BioDeep_00000422465

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product


代谢物信息卡片


D-(+)-Erythro-1,3-dihydroxy-2-amino-4-trans-octadecene

化学式: C18H37NO2 (299.2824)
中文名称: D-赤型鞘氨醇, D-鞘氨醇, 鞘氨醇
谱图信息: 最多检出来源 Homo sapiens(feces) 15.56%

Reviewed

Last reviewed on 2024-07-16.

Cite this Page

Sphingosine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/sphingosine (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001343). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCCCCCCCCCC/C=C/[C@@H](O)[C@@H](N)CO
InChI: InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h14-15,17-18,20-21H,2-13,16,19H2,1H3/b15-14+/t17-,18+/m0/s1

描述信息

Sphingosine, also known as (4E)-sphingenine or sphing-4-enine, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Sphingosine is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain, which forms a primary part of sphingolipids. Sphingolipids are a class of cell membrane lipids that include sphingomyelin. Thus, sphingosine is considered to be a sphingoid base lipid. Sphingosine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphingosine is found in all living organisms ranging from bacteria to plants to humans. Sphingosine is synthesized from palmitoyl CoA and serine in a condensation required to yield dehydrosphingosine. Dehydrosphingosine is then reduced by NADPH to dihydrosphingosine (sphinganine), and finally oxidized by FAD to sphingosine. Within humans and other mammals, sphingosine participates in a number of enzymatic reactions. In particular, sphingosine can be converted into sphingosine 1-phosphate through its interaction with the enzyme sphingosine kinase 2. sphingosine 1-phosphate is an important signaling molecule. In addition, sphingosine can be biosynthesized from sphingosine 1-phosphate; which is mediated by the enzyme sphingosine-1-phosphate phosphatase 2. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. In humans, sphingosine is involved in globoid cell leukodystrophy.
Cerebrosides is the common name for a group of glycosphingolipids called monoglycosylceramides which are important components in animal muscle and nerve cell membranes. They consist of a ceramide with a single sugar residue at the 1-hydroxyl moiety. The sugar residue can be either glucose or galactose; the two major types are therefore called glucocerebrosides and galactocerebrosides. Galactocerebrosides are typically found in neural tissue, while glucocerebrosides are found in other tissues.

Sphingosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-78-4 (retrieved 2024-07-16) (CAS RN: 123-78-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
D-erythro-Sphingosine (Erythrosphingosine) is a very potent activator of p32-kinase with an EC50 of 8 μM, and inhibits protein kinase C (PKC). D-erythro-Sphingosine (Erythrosphingosine) is also a PP2A activator[1][2][3][4].
D-erythro-Sphingosine (Erythrosphingosine) is a very potent activator of p32-kinase with an EC50 of 8 μM, and inhibits protein kinase C (PKC). D-erythro-Sphingosine (Erythrosphingosine) is also a PP2A activator[1][2][3][4].

同义名列表

43 个代谢物同义名

D-(+)-Erythro-1,3-dihydroxy-2-amino-4-trans-octadecene; (2S,3R)-(e)-2-Amino-1,3-dihydroxy-4-octadecene; (2S,3R,4E)-2-Amino-3-hydroxyoctadec-4-ene-1-ol; trans-D-Erythro-2-amino-4-octadecene-1,3-diol; (2S,3R,4E)-2-aminooctadec-4-ene-1,3-diol; (2S,3R,4E)-2-Amino-4-octadecene-1,3-diol; (2S,3R,e)-2-Aminooctadec-4-ene-1,3-diol; (e)-D-Erythro-4-octadecene-1,3-diol; D-(+)-erythro-4-trans-Sphingenine; 2S-Amino-4E-octadecene-1,3R-diol; (e)-2-Amino-4-octadecan-1,3-diol; 2-Amino-4-octadecene-1,3-diol; D-erythro-Sphingosine C-18; D-erythro-C18-Sphingosine; (-)-D-erythro-Sphingosine; L-threo-Sphingosine C-18; erythro-C18-Sphingosine; D-erythro-Sphingosine; erythro-4-Sphingenine; (4E)-Sphing-4-enine; (2S,3R)-Sphingosine; 4-trans-Sphingenine; trans-4-Sphingenine; Erythrosphingosine; Sphingosine D18:1; (4E)-Sphingenine; C18-Sphingosine; (-)-Sphingosine; C18 Sphingosine; Sphing-4-enine; D-Sphingosine; 4-Sphingenine; 4 Sphingenine; cerebroside; Sphingosine; SPB 18:1;O2; Sphingenine; Sphingosin; Sphingoid; SP(d18:1); Sph; Sphingosine; D-erythro-N-stearoylsphingosine



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

26 个相关的代谢反应过程信息。

Reactome(20)

BioCyc(0)

WikiPathways(6)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

50 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Ji-Ping Lan, Ya-Fu Xue, Jia-Ying Pu, Yan Ding, Zhong-Yuan Gan, Ying-Bo Yang, Zheng-Tao Wang, Xiao-Lu Jie, Li Yang. Plantaginis semen ameliorates diabetic kidney disease via targeting the sphingosine kinase 1/sphingosine-1-phosphate pathway. Journal of ethnopharmacology. 2024 Sep; 331(?):118221. doi: 10.1016/j.jep.2024.118221. [PMID: 38677576]
  • Andreea Nădăban, Gerrit S Gooris, Charlotte M Beddoes, Robert M Dalgliesh, Marc Malfois, Bruno Demé, Joke A Bouwstra. The molecular arrangement of ceramides in the unit cell of the long periodicity phase of stratum corneum models shows a high adaptability to different ceramide head group structures. Biochimica et biophysica acta. Biomembranes. 2024 Jun; 1866(5):184324. doi: 10.1016/j.bbamem.2024.184324. [PMID: 38688405]
  • Daniela M Magalhães, Nicolas A Stewart, Myrthe Mampay, Sara O Rolle, Chloe M Hall, Emad Moeendarbary, Melanie S Flint, Ana M Sebastião, Cláudia A Valente, Marcus K Dymond, Graham K Sheridan. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus. Journal of neurochemistry. 2024 Jun; 168(6):1113-1142. doi: 10.1111/jnc.16073. [PMID: 38339785]
  • Shinji Tanaka. Targeting inflammation in perivascular cells and neuroimmune interactions for treating kidney disease. Clinical and experimental nephrology. 2024 Jun; 28(6):505-512. doi: 10.1007/s10157-024-02494-7. [PMID: 38630367]
  • Christine Bassila, George E G Kluck, Narmadaa Thyagarajan, Kevin M Chathely, Leticia Gonzalez, Bernardo L Trigatti. Ligand-dependent interactions between SR-B1 and S1PR1 in macrophages and atherosclerotic plaques. Journal of lipid research. 2024 May; 65(5):100541. doi: 10.1016/j.jlr.2024.100541. [PMID: 38583587]
  • Jian Zhang, Qian Meng, Qiaoling Wang, Hongju Zhang, Huidan Tian, Tiantian Wang, Fan Xu, Xingying Yan, Ming Luo. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis. International journal of biological macromolecules. 2024 May; 267(Pt 1):131323. doi: 10.1016/j.ijbiomac.2024.131323. [PMID: 38574912]
  • Aritra Bhattacharyya, Ranjha Khan, Joanna Y Lee, Gizachew Tassew, Babak Oskouian, Maria L Allende, Richard L Proia, Xiaoyang Yin, Javier G Ortega, Mallar Bhattacharya, Julie D Saba. Gene therapy with AAV9-SGPL1 in an animal model of lung fibrosis. The Journal of pathology. 2024 05; 263(1):22-31. doi: 10.1002/path.6256. [PMID: 38332723]
  • Yong-Shan Zheng, Ya-Li Liu, Zeng-Guang Xu, Cheng He, Zhan-Yun Guo. Is myeloid-derived growth factor a ligand of the sphingosine-1-phosphate receptor 2?. Biochemical and biophysical research communications. 2024 Apr; 706(?):149766. doi: 10.1016/j.bbrc.2024.149766. [PMID: 38484568]
  • Waqas Younis, Ira J Goldberg. Can another lipid, sphingosine-1-phosphate, treat atherosclerosis?. Cardiovascular research. 2024 Apr; 120(5):435-436. doi: 10.1093/cvr/cvae050. [PMID: 38563326]
  • Sicong Ma, Roger Sandhoff, Xiu Luo, Fuwei Shang, Qiaozhen Shi, Zhaolong Li, Jingxia Wu, Yanan Ming, Frank Schwarz, Alaa Madi, Nina Weisshaar, Alessa Mieg, Marvin Hering, Ferdinand Zettl, Xin Yan, Kerstin Mohr, Nora Ten Bosch, Zhe Li, Gernot Poschet, Hans-Reimer Rodewald, Nina Papavasiliou, Xi Wang, Pu Gao, Guoliang Cui. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Science immunology. 2024 Apr; 9(94):eadg8817. doi: 10.1126/sciimmunol.adg8817. [PMID: 38640251]
  • Annalena Wille, Sarah Weske, Karin von Wnuck Lipinski, Philipp Wollnitzke, Nathalie H Schröder, Nadine Thomas, Melissa K Nowak, Jennifer Deister-Jonas, Björn Behr, Petra Keul, Bodo Levkau. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2024 Apr; 39(3):357-372. doi: 10.1093/jbmr/zjae006. [PMID: 38477738]
  • Xiaoqian Ji, Zihao Chen, Qiyuan Wang, Bin Li, Yan Wei, Yun Li, Jianqing Lin, Weisheng Cheng, Yijie Guo, Shilin Wu, Longkun Mao, Yuzhou Xiang, Tian Lan, Shanshan Gu, Meng Wei, Joe Z Zhang, Lan Jiang, Jia Wang, Jin Xu, Nan Cao. Sphingolipid metabolism controls mammalian heart regeneration. Cell metabolism. 2024 Apr; 36(4):839-856.e8. doi: 10.1016/j.cmet.2024.01.017. [PMID: 38367623]
  • Chanele K Polenz, Corey A Scipione, Sharon J Hyduk, Marwan G Althagafi, Hisham M Ibrahim, Myron I Cybulsky. Plasma S1P Orchestrates the Reverse Transendothelial Migration of Aortic Intimal Myeloid Cells in Mice. Arteriosclerosis, thrombosis, and vascular biology. 2024 Apr; 44(4):883-897. doi: 10.1161/atvbaha.123.320227. [PMID: 38328936]
  • F J Bikker. [Phytosphingosine, a new ingredient for oral care products?]. Nederlands tijdschrift voor tandheelkunde. 2024 04; 131(4):163-166. doi: 10.5177/ntvt.2024.04.23102. [PMID: 38591120]
  • Baasanjav Uranbileg, Eri Sakai, Masayuki Kubota, Hideaki Isago, Masahiko Sumitani, Yutaka Yatomi, Makoto Kurano. Development of an advanced liquid chromatography-tandem mass spectrometry measurement system for simultaneous sphingolipid analysis. Scientific reports. 2024 03; 14(1):5699. doi: 10.1038/s41598-024-56321-w. [PMID: 38459112]
  • Gabriel da Silva, Thaís Moré Milan, Andréia Machado Leopoldino. The accumulation of sphingosine kinase 2 disrupts the DNA damage response and promotes resistance to genotoxic agents. Gene. 2024 Mar; 897(?):148063. doi: 10.1016/j.gene.2023.148063. [PMID: 38048970]
  • Zhengzheng Zhang, Naama Karu, Alida Kindt, Madhulika Singh, Lieke Lamont, Adriaan J van Gammeren, Anton A M Ermens, Amy C Harms, Lutzen Portengen, Roel C H Vermeulen, Willem A Dik, Anton W Langerak, Vincent H J van der Velden, Thomas Hankemeier. Association of Altered Plasma Lipidome with Disease Severity in COVID-19 Patients. Biomolecules. 2024 Mar; 14(3):. doi: 10.3390/biom14030296. [PMID: 38540716]
  • Yueh-Chien Lin, Steven Swendeman, Irina S Moreira, Avishek Ghosh, Andrew Kuo, Nícia Rosário-Ferreira, Shihui Guo, Alan Culbertson, Michel V Levesque, Andreane Cartier, Takahiro Seno, Alec Schmaier, Sylvain Galvani, Asuka Inoue, Samir M Parikh, Garret A FitzGerald, David Zurakowski, Maofu Liao, Robert Flaumenhaft, Zeynep H Gümüş, Timothy Hla. Designer high-density lipoprotein particles enhance endothelial barrier function and suppress inflammation. Science signaling. 2024 Feb; 17(824):eadg9256. doi: 10.1126/scisignal.adg9256. [PMID: 38377179]
  • Judith Lang, Matthias Soddemann, Michael J Edwards, Gregory C Wilson, Karl S Lang, Erich Gulbins. Sphingosine Prevents Rhinoviral Infections. International journal of molecular sciences. 2024 Feb; 25(5):. doi: 10.3390/ijms25052486. [PMID: 38473734]
  • Zhen Wang, Shu-Ying Yi, Yuan-Ying Zhang, Yu-di Wang, Han-Lin Chen, Yi-Jie Guo, Xin-Ming Wei, Du-Xiao Yang. The role of vitamin D through SphK1/S1P in the regulation of MS progression. The Journal of steroid biochemistry and molecular biology. 2024 Feb; 236(?):106425. doi: 10.1016/j.jsbmb.2023.106425. [PMID: 37984747]
  • Scotland Farley, Frank Stein, Per Haberkant, Fikadu G Tafesse, Carsten Schultz. Trifunctional Sphinganine: A New Tool to Dissect Sphingolipid Function. ACS chemical biology. 2024 Jan; ?(?):. doi: 10.1021/acschembio.3c00554. [PMID: 38284972]
  • Yu-Xin Xie, Hui Yao, Jin-Fu Peng, Dan Ni, Wan-Ting Liu, Chao-Quan Li, Guang-Hui Yi. Insight into Modulators of Sphingosine-1-phosphate Receptor and Implications for Cardiovascular Therapeutics. Journal of drug targeting. 2024 Jan; ?(?):1-20. doi: 10.1080/1061186x.2024.2309577. [PMID: 38269855]
  • Yongxian Bi, Jinjun Liu, Hao Li, Jinyue Sun, Wenyu Ding, Congfen He, Yan Jia. Lipidomics-based analysis of lipid differences between dry skin of women aged 22-28 years and 29-35 years. Journal of cosmetic dermatology. 2024 Jan; ?(?):. doi: 10.1111/jocd.16137. [PMID: 38214419]
  • Siyuan Li, Xiaomei Xue, Hui Zhang, Lai Jiang, Yunqian Zhang, Xiaoyan Zhu, Yan Wang. Inhibition of sphingosine kinase 1 attenuates LPS-induced acute lung injury by suppressing endothelial cell pyroptosis. Chemico-biological interactions. 2024 Jan; 390(?):110868. doi: 10.1016/j.cbi.2024.110868. [PMID: 38218310]
  • Yosuke Osawa, Hironari Kawai, Keigo Nakashima, Yuichi Nakaseko, Daisuke Suto, Keisuke Yanagida, Tomomi Hashidate-Yoshida, Taizo Mori, Sachiyo Yoshio, Takaaki Ohtake, Hideo Shindou, Tatsuya Kanto. Sphingosine-1-phosphate promotes liver fibrosis in metabolic dysfunction-associated steatohepatitis. PloS one. 2024; 19(5):e0303296. doi: 10.1371/journal.pone.0303296. [PMID: 38753743]
  • Gehui Sun, Bin Wang, Xiaoyu Wu, Jiangfeng Cheng, Junming Ye, Chunli Wang, Hongquan Zhu, Xiaofeng Liu. How do sphingosine-1-phosphate affect immune cells to resolve inflammation?. Frontiers in immunology. 2024; 15(?):1362459. doi: 10.3389/fimmu.2024.1362459. [PMID: 38482014]
  • Swapan K Ray, Somsankar Dasgupta. Chromatographic Separation and Quantitation of Sphingolipids from the Central Nervous System or Any Other Biological Tissue. Methods in molecular biology (Clifton, N.J.). 2024; 2761(?):149-157. doi: 10.1007/978-1-0716-3662-6_12. [PMID: 38427236]
  • Nadine Thomas, Nathalie H Schröder, Melissa K Nowak, Philipp Wollnitzke, Shahrooz Ghaderi, Karin von Wnuck Lipinski, Annalena Wille, Jennifer Deister-Jonas, Jens Vogt, Markus H Gräler, Lisa Dannenberg, Tobias Buschmann, Philipp Westhoff, Amin Polzin, Malte Kelm, Petra Keul, Sarah Weske, Bodo Levkau. Sphingosine-1-phosphate suppresses GLUT activity through PP2A and counteracts hyperglycemia in diabetic red blood cells. Nature communications. 2023 Dec; 14(1):8329. doi: 10.1038/s41467-023-44109-x. [PMID: 38097610]
  • Sanya Thomas, Stephen Varghese Samuel, Annmarie Hoch, Caitlin Syphurs, Joann Diray-Arce. The Implication of Sphingolipids in Viral Infections. International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417303. [PMID: 38139132]
  • Jialin Wu, Ying Liang, Panfeng Fu, Anlin Feng, Qing Lu, Hoshang J Unwalla, David P Marciano, Stephen M Black, Ting Wang. Sphingosine-1-Phosphate Receptor 3 Induces Endothelial Barrier Loss via ADAM10-Mediated Vascular Endothelial-Cadherin Cleavage. International journal of molecular sciences. 2023 Nov; 24(22):. doi: 10.3390/ijms242216083. [PMID: 38003272]
  • Mohamed Ibrahim Madkour, Md Torikul Islam, Trevor S Tippetts, Kamrul H Chowdhury, Lisa A Lesniewski, Scott A Summers, Falak Zeb, Dana N Abdelrahim, Refat AlKurd, Husam M Khraiwesh, Katia H AbuShihab, Asma AlBakri, Khaled Obaideen, MoezAlIslam E Faris. Ramadan intermittent fasting is associated with ameliorated inflammatory markers and improved plasma sphingolipids/ceramides in subjects with obesity: lipidomics analysis. Scientific reports. 2023 Oct; 13(1):17322. doi: 10.1038/s41598-023-43862-9. [PMID: 37833312]
  • Bryce A Jones, Komuraiah Myakala, Mahilan Guha, Shania Davidson, Sharmila Adapa, Isabel Lopez Santiago, Isabel Schaffer, Yang Yue, Jeremy C Allegood, L Ashley Cowart, Xiaoxin X Wang, Avi Z Rosenberg, Moshe Levi. Farnesoid X receptor prevents neutrophil extracellular traps via reduced sphingosine-1-phosphate in chronic kidney disease. American journal of physiology. Renal physiology. 2023 Oct; ?(?):. doi: 10.1152/ajprenal.00292.2023. [PMID: 37823198]
  • Eija Ahonen, Annelie Damerau, Kaisa M Linderborg. Antioxidative Effect of Dihydrosphingosine (d18:0) and α-Tocopherol on Tridocosahexaenoin (DHA-TAG). Journal of agricultural and food chemistry. 2023 Oct; 71(40):14769-14781. doi: 10.1021/acs.jafc.3c02668. [PMID: 37751317]
  • Christopher W Shrader, Daniel Foster, Yugesh Kharel, Tao Huang, Kevin R Lynch, Webster L Santos. Imidazole-based sphingosine-1-phosphate transporter Spns2 inhibitors. Bioorganic & medicinal chemistry letters. 2023 Oct; ?(?):129516. doi: 10.1016/j.bmcl.2023.129516. [PMID: 37832799]
  • Nicolas Coant, John D Bickel, Ronald Rahaim, Yuka Otsuka, Yong-Mi Choi, Ruijuan Xu, Michael Simoes, Chris Cariello, Cungui Mao, Essa M Saied, Christoph Arenz, Timothy P Spicer, Thomas D Bannister, Peter J Tonge, Michael V Airola, Louis Scampavia, Yusuf A Hannun, Robert C Rizzo, John D Haley. Neutral ceramidase-active site inhibitor chemotypes and binding modes. Bioorganic chemistry. 2023 10; 139(?):106747. doi: 10.1016/j.bioorg.2023.106747. [PMID: 37531819]
  • Jun-Ichi Morishige, Kazuaki Yoshioka, Hiroki Nakata, Kazuhiro Ishimaru, Naoto Nagata, Tamotsu Tanaka, Yoh Takuwa, Hitoshi Ando. Sphingosine Kinase 1 is Involved in Triglyceride Breakdown by Maintaining Lysosomal Integrity in Brown Adipocytes. Journal of lipid research. 2023 Sep; ?(?):100450. doi: 10.1016/j.jlr.2023.100450. [PMID: 37751791]
  • Yongjie Liu, Yuqing Wu, Lydia Leukers, Kristin Schimank, Jonathan Wilker, Andreas Wissmann, Ursula Rauen, Nikolaus Pizanis, Christian Taube, Achim Koch, Erich Gulbins, Markus Kamler. Treatment of Staphylococcus aureus infection with sphingosine in ex vivo perfused and ventilated lungs. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2023 Sep; ?(?):. doi: 10.1016/j.healun.2023.08.021. [PMID: 37673383]
  • Sabira Mohammed, Anu Bindu, Arun Viswanathan, Kuzhuvelil B Harikumar. Sphingosine 1-phosphate signaling during infection and immunity. Progress in lipid research. 2023 Aug; ?(?):101251. doi: 10.1016/j.plipres.2023.101251. [PMID: 37633365]
  • Nick D Bergkamp, Jeffrey R van Senten, Hendrik J Brink, Maarten P Bebelman, Jelle van den Bor, Tuğçe S Çobanoğlu, Kasper Dinkla, Johannes Köster, Gunnar Klau, Marco Siderius, Martine J Smit. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P1 signaling axis. Science signaling. 2023 08; 16(798):eade6737. doi: 10.1126/scisignal.ade6737. [PMID: 37582160]
  • David Martín-Hernández, Marina Muñoz-López, Hiram Tendilla-Beltrán, Javier R Caso, Borja García-Bueno, Luis Menchén, Juan C Leza. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm?. International journal of molecular sciences. 2023 Aug; 24(16):. doi: 10.3390/ijms241612634. [PMID: 37628815]
  • Haiping Tang, Huanyu Li, Dheeraj Prakaash, Conrado Pedebos, Xingyu Qiu, David B Sauer, Syma Khalid, Katharina Duerr, Carol V Robinson. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate. Molecular cell. 2023 08; 83(15):2739-2752.e5. doi: 10.1016/j.molcel.2023.06.033. [PMID: 37499662]
  • Junhua Xiao. Sphingosine 1-Phosphate Lyase in the Developing and Injured Nervous System: a Dichotomy?. Molecular neurobiology. 2023 Jul; ?(?):. doi: 10.1007/s12035-023-03524-3. [PMID: 37507574]
  • Li Jianbin, Huang Yiping, Zhang Yueqin, Liu Pengcheng, Liu Mengxia, Zhang Min, Wu Rui. S1P/S1PR signaling pathway advancements in autoimmune diseases. Biomolecules & biomedicine. 2023 Jul; ?(?):. doi: 10.17305/bb.2023.9082. [PMID: 37504219]
  • Federica Pierucci, Antony Chirco, Elisabetta Meacci. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells. International journal of molecular sciences. 2023 Jun; 24(13):. doi: 10.3390/ijms241310548. [PMID: 37445724]
  • Andreea Nădăban, Jannik Rousel, Dounia El Yachioui, Gerrit S Gooris, Charlotte M Beddoes, Robert M Dalgliesh, Marc Malfois, Robert Rissmann, Joke A Bouwstra. Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models. Journal of lipid research. 2023 Jun; ?(?):100400. doi: 10.1016/j.jlr.2023.100400. [PMID: 37301511]
  • Evgeny Berdyshev, Jihyun Kim, Byung Eui Kim, Elena Goleva, Taras Lyubchenko, Irina Bronova, Anna Sofia Bronoff, Olivia Xiao, Jiwon Kim, Sukyung Kim, Mijeong Kwon, Sungjoo Lee, Yu Jeong Seo, Kyunga Kim, Suk-Joo Choi, Soo-Young Oh, Seung Hwan Kim, So Yeon Yu, Seung Yong Hwang, Kangmo Ahn, Donald Y M Leung. Stratum corneum lipid and cytokine biomarkers at age 2 months predict the future onset of atopic dermatitis. The Journal of allergy and clinical immunology. 2023 05; 151(5):1307-1316. doi: 10.1016/j.jaci.2023.02.013. [PMID: 36828081]
  • Keisuke Kiyozuka, Xian Zhao, Akimitsu Konishi, Yoji Andrew Minamishima, Hideru Obinata. Apolipoprotein M supports S1P production and conservation and mediates prolonged Akt activation via S1PR1 and S1PR3. Journal of biochemistry. 2023 Apr; ?(?):. doi: 10.1093/jb/mvad037. [PMID: 37098187]
  • Yuechun Zhao, Yuheng Zhang, Jiaqi Li, Ningxin Zhang, Qiubai Jin, Yuxia Qi, Ping Song. Pathogenic sphingosine 1-phosphate pathway in psoriasis: a critical review of its pathogenic significance and potential as a therapeutic target. Lipids in health and disease. 2023 Apr; 22(1):52. doi: 10.1186/s12944-023-01813-3. [PMID: 37072847]
  • Shun Yaginuma, Jumpei Omi, Kuniyuki Kano, Junken Aoki. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacology & therapeutics. 2023 Apr; 246(?):108415. doi: 10.1016/j.pharmthera.2023.108415. [PMID: 37061204]
  • Gerhild van Echten-Deckert. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacology & therapeutics. 2023 Apr; 244(?):108381. doi: 10.1016/j.pharmthera.2023.108381. [PMID: 36907249]
  • Ferdinand Fandrei, Tomáš Havrišák, Lukáš Opálka, Oskar Engberg, AlbertA Smith, Petra Pullmannová, Norbert Kučerka, Veronika Ondrejčeková, Bruno Demé, Lucie Nováková, Miloš Steinhart, Kateřina Vávrová, Daniel Huster. The Intriguing Molecular Dynamics of Cer[EOS] in Rigid Skin Barrier Lipid Layers Requires Improvement of the Model. Journal of lipid research. 2023 Mar; ?(?):100356. doi: 10.1016/j.jlr.2023.100356. [PMID: 36948272]
  • Janathan Altuzar, Judith Notbohm, Frank Stein, Per Haberkant, Pia Hempelmann, Saskia Heybrock, Jutta Worsch, Paul Saftig, Doris Höglinger. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proceedings of the National Academy of Sciences of the United States of America. 2023 03; 120(11):e2213886120. doi: 10.1073/pnas.2213886120. [PMID: 36893262]
  • Colin Niaudet, Bongnam Jung, Andrew Kuo, Steven Swendeman, Edward Bull, Takahiro Seno, Reed Crocker, Zhongjie Fu, Lois E H Smith, Timothy Hla. Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization. EMBO molecular medicine. 2023 Mar; ?(?):e16645. doi: 10.15252/emmm.202216645. [PMID: 36912000]
  • Charlene Fernandez, Ifrodet Giorgees, Eva Goss, Jean-Paul Desaulniers. Effective carrier-free gene-silencing activity of sphingosine-modified siRNAs. Organic & biomolecular chemistry. 2023 03; 21(10):2107-2117. doi: 10.1039/d2ob02099h. [PMID: 36645381]
  • Nina Hartrampf, Samuel M Leitao, Nils Winter, Henry Toombs-Ruane, James A Frank, Petra Schwille, Dirk Trauner, Henri G Franquelim. Structural Diversity of Photoswitchable Sphingolipids for Optodynamic Control of Lipid Microdomains. Biophysical journal. 2023 Mar; ?(?):. doi: 10.1016/j.bpj.2023.02.029. [PMID: 36869591]
  • Joseph Bonica, Christopher J Clarke, Lina M Obeid, Chiara Luberto, Yusuf A Hannun. Upregulation of sphingosine kinase 1 in response to doxorubicin generates an angiogenic response via stabilization of Snail. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2023 03; 37(3):e22787. doi: 10.1096/fj.202201066r. [PMID: 36723905]
  • C J Smith, J L Williams, C Hall, J Casas, M P Caley, E A O'Toole, R Prasad, L A Metherell. Ichthyosis linked to sphingosine 1-phosphate lyase insufficiency is due to aberrant sphingolipid and calcium regulation. Journal of lipid research. 2023 Mar; ?(?):100351. doi: 10.1016/j.jlr.2023.100351. [PMID: 36868360]
  • Shah Alam, Sumaiya Yasmeen Afsar, Gerhild Van Echten-Deckert. S1P Released by SGPL1-Deficient Astrocytes Enhances Astrocytic ATP Production via S1PR2,4, Thus Keeping Autophagy in Check: Potential Consequences for Brain Health. International journal of molecular sciences. 2023 Feb; 24(5):. doi: 10.3390/ijms24054581. [PMID: 36902011]
  • Makoto Kurano, Kazuhisa Tsukamoto, Tomo Shimizu, Masumi Hara, Yutaka Yatomi. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy. Translational research : the journal of laboratory and clinical medicine. 2023 Feb; ?(?):. doi: 10.1016/j.trsl.2023.02.004. [PMID: 36805561]
  • Aissa Miriam Röhrig, Katja Jakobi, Julia Dietz, Dominique Thomas, Eva Herrmann, Christoph Welsch, Christoph Sarrazin, Josef Pfeilschifter, Stefan Zeuzem, Georgios Grammatikos. The role of serum sphingolipids as potential biomarkers of non-response to direct acting antiviral therapy in chronic hepatitis C virus infection. Journal of viral hepatitis. 2023 Feb; 30(2):138-147. doi: 10.1111/jvh.13776. [PMID: 36463431]
  • Makoto Kurano, Kazuhisa Tsukamoto, Shigeo Kamitsuji, Naoyuki Kamatani, Koji Hasegawa, Masumi Hara, Toshio Ishikawa, Yutaka Yatomi, Tamio Teramoto. Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflammation research : official journal of the European Histamine Research Society ... [et al.]. 2023 Feb; 72(2):263-280. doi: 10.1007/s00011-022-01679-8. [PMID: 36536251]
  • Meaghan Greene, Maria Jose Hernandez-Corbacho, Anne G Ostermeyer-Fay, Yusuf A Hannun, Daniel Canals. A simple, highly sensitive, and facile method to quantify ceramide at the plasma membrane. Journal of lipid research. 2023 Feb; 64(2):100322. doi: 10.1016/j.jlr.2022.100322. [PMID: 36549592]
  • Hayder M Al-Kuraishy, Gaber El-Saber Batiha, Ali I Al-Gareeb, Nasser A Hadi Al-Harcan, Nermeen N Welson. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon. Molecular and cellular biochemistry. 2023 Jan; ?(?):. doi: 10.1007/s11010-023-04658-7. [PMID: 36652045]
  • Burkhard Kleuser, Wolfgang Bäumer. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021456. [PMID: 36674974]
  • Michel V Levesque, Timothy Hla. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harbor perspectives in medicine. 2023 Jan; 13(1):. doi: 10.1101/cshperspect.a041153. [PMID: 35667710]
  • Shanshan Wang, Zhen Tian, Yanjiao Lu, Zhenli Huang, Yan Fan, Boyu Li, Hongyan Zheng, Xiaojie Wu, Meijia Wang, Jianping Zhao, Jungang Xie. Sphingosine-1-Phosphate Receptor 4 Attenuates Neutrophilic Airway Inflammation in Experimental Asthma via Repressing Proinflammatory Macrophage Activation. International journal of biological sciences. 2023; 19(5):1597-1615. doi: 10.7150/ijbs.80256. [PMID: 37056936]
  • Christine Sternstein, Jan Schlegel, Markus Sauer, Jürgen Seibel. Bioorthogonal azido-S1P works as substrate for S1PR1. Journal of lipid research. 2023 01; 64(1):100311. doi: 10.1016/j.jlr.2022.100311. [PMID: 36370806]
  • Edward D Johnstone, Melissa Westwood, Mark Dilworth, Jonathan R Wray, Alexandra C Kendall, Anna Nicolaou, Jenny E Myers. Plasma S1P and Sphingosine are not Different Prior to Pre-Eclampsia in Women at High Risk of Developing the Disease. Journal of lipid research. 2023 01; 64(1):100312. doi: 10.1016/j.jlr.2022.100312. [PMID: 36370808]
  • Núria Puig, Jose Rives, Montserrat Estruch, Ana Aguilera-Simon, Noemi Rotllan, Mercedes Camacho, Núria Colomé, Francesc Canals, José Luis Sánchez-Quesada, Sonia Benitez. Presence of Ceramidase Activity in Electronegative LDL. International journal of molecular sciences. 2022 Dec; 24(1):. doi: 10.3390/ijms24010165. [PMID: 36613609]
  • Sagarika Chakrabarty, Quyen Bui, Leylla Badeanlou, Kelly Hester, Jerold Chun, Wolfram Ruf, Theodore P Ciaraldi, Fahumiya Samad. S1P/S1PR3 signalling axis protects against obesity-induced metabolic dysfunction. Adipocyte. 2022 12; 11(1):69-83. doi: 10.1080/21623945.2021.2021700. [PMID: 35094654]
  • Thomas Hach, Kasra Shakeri-Nejad, Marc Bigaud, Frank Dahlke, Massimiliano de Micco, Olivier Petricoul, Gordon Graham, Daniela Piani-Meier, Renato Turrini, Volker Brinkmann, Ferdinando Nicoletti. Rationale for Use of Sphingosine-1-Phosphate Receptor Modulators in COVID-19 Patients: Overview of Scientific Evidence. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 2022 Nov; ?(?):. doi: 10.1089/jir.2022.0078. [PMID: 36454249]
  • Gulibositan Aji, Sheng Jiang, Halmurat Obulkasim, Zhiqiang Lu, Wei Wang, Pu Xia. Sphingosine kinase 2 regulates insulin receptor trafficking in hepatocytes. Experimental biology and medicine (Maywood, N.J.). 2022 Nov; ?(?):15353702221131886. doi: 10.1177/15353702221131886. [PMID: 36408724]
  • Anna Borup, Ida Donkin, Mariëtte R Boon, Martin Frydland, Borja Martinez-Tellez, Annika Loft, Sune H Keller, Andreas Kjaer, Jesper Kjaergaard, Christian Hassager, Romain Barrès, Patrick C N Rensen, Christina Christoffersen. Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans. Scientific reports. 2022 11; 12(1):18753. doi: 10.1038/s41598-022-21938-2. [PMID: 36335116]
  • Qi Qian, Yanhua Gao, Ge Xun, Xu Wang, Jiachen Ge, Huaxing Zhang, Feifei Mou, Suwen Su, Qiao Wang. Synchronous Investigation of the Mechanism and Substance Basis of Tripterygium Glycosides Tablets on Anti-rheumatoid Arthritis and Hepatotoxicity. Applied biochemistry and biotechnology. 2022 Nov; 194(11):5333-5352. doi: 10.1007/s12010-022-04011-6. [PMID: 35763252]
  • Caroline H Knittel, Neal K Devaraj. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Accounts of chemical research. 2022 11; 55(21):3099-3109. doi: 10.1021/acs.accounts.2c00511. [PMID: 36215688]
  • Yali Lai, Yue Tian, Xintong You, Jiangnan Du, Jianmei Huang. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids in health and disease. 2022 Oct; 21(1):101. doi: 10.1186/s12944-022-01701-2. [PMID: 36229882]
  • Changzheng Li, Binghuo Wu, Yishan Li, Yaxi Liu, Jin Wang, Jiayi Xie, Xi Xu, Xiaobin Tian, Zhitao Ye, Jingjing Guan, Jie Chen, Siyu Xie, Baolin Zhang, Boyong Cai, Qianhao Wang, Haopeng Yu, Tian Lan, Cheuk Him Man, Xunlei Kang, Pengxu Qian, John M Perry, Aibin He, Linjia Jiang, Meng Zhao. Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness. Blood. 2022 10; 140(15):1686-1701. doi: 10.1182/blood.2022016112. [PMID: 35881840]
  • Lisa Peters, Wolfgang M Kuebler, Szandor Simmons. Sphingolipids in Atherosclerosis: Chimeras in Structure and Function. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231911948. [PMID: 36233252]
  • Moritz Liebmann, Katharina Grupe, Melissa Asuaje Pfeifer, Ingo Rustenbeck, Stephan Scherneck. Differences in lipid metabolism in acquired versus preexisting glucose intolerance during gestation: role of free fatty acids and sphingosine-1-phosphate. Lipids in health and disease. 2022 Oct; 21(1):99. doi: 10.1186/s12944-022-01706-x. [PMID: 36209101]
  • Sumaiya Y Afsar, Shah Alam, Carina Fernandez Gonzalez, Gerhild van Echten-Deckert. Sphingosine-1-phosphate-lyase deficiency affects glucose metabolism in a way that abets oncogenesis. Molecular oncology. 2022 Oct; 16(20):3642-3653. doi: 10.1002/1878-0261.13300. [PMID: 35973936]
  • Julia Hernández Lluesa, Luis Carlos López-Romero, José Jesús Broseta Monzó, Marta Roca Marugán, Iris Viejo Boyano, Diana Rodríguez-Espinosa, Aina Gómez-Bori, Amparo Soldevila Orient, Ramón Devesa Such, Pilar Sánchez Perez, Julio Hernández Jaras. Lipidic profiles of patients starting peritoneal dialysis suggest an increased cardiovascular risk beyond classical dyslipidemia biomarkers. Scientific reports. 2022 09; 12(1):16394. doi: 10.1038/s41598-022-20757-9. [PMID: 36180468]
  • Elisa N D Palladino, Tytus Bernas, Christopher D Green, Cynthia Weigel, Sandeep K Singh, Can E Senkal, Andrea Martello, John P Kennelly, Erhard Bieberich, Peter Tontonoz, David A Ford, Sheldon Milstien, Emily R Eden, Sarah Spiegel. Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking. Proceedings of the National Academy of Sciences of the United States of America. 2022 09; 119(39):e2204396119. doi: 10.1073/pnas.2204396119. [PMID: 36122218]
  • Céline Tolksdorf, Eileen Moritz, Robert Wolf, Ulrike Meyer, Sascha Marx, Sandra Bien-Möller, Ulrike Garscha, Gabriele Jedlitschky, Bernhard H Rauch. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. International journal of molecular sciences. 2022 Sep; 23(18):. doi: 10.3390/ijms231810278. [PMID: 36142188]
  • Reza Dastvan, Ali Rasouli, Sepehr Dehghani-Ghahnaviyeh, Samantha Gies, Emad Tajkhorshid. Proton-driven alternating access in a spinster lipid transporter. Nature communications. 2022 09; 13(1):5161. doi: 10.1038/s41467-022-32759-2. [PMID: 36055994]
  • Andreea Nădăban, Gerrit S Gooris, Charlotte M Beddoes, Robert M Dalgliesh, Joke A Bouwstra. Phytosphingosine ceramide mainly localizes in the central layer of the unique lamellar phase of skin lipid model systems. Journal of lipid research. 2022 09; 63(9):100258. doi: 10.1016/j.jlr.2022.100258. [PMID: 35931203]
  • Melanie Glueck, Alexander Koch, Robert Brunkhorst, Nerea Ferreiros Bouzas, Sandra Trautmann, Liliana Schaefer, Waltraud Pfeilschifter, Josef Pfeilschifter, Rajkumar Vutukuri. The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma. The FEBS journal. 2022 09; 289(18):5670-5681. doi: 10.1111/febs.16446. [PMID: 35320610]
  • Meghana Nagaraj, Marcus Höring, Maria A Ahonen, Van Dien Nguyen, You Zhou, Helena Vihinen, Eija Jokitalo, Gerhard Liebisch, P A Nidhina Haridas, Vesa M Olkkonen. GOLM1 depletion modifies cellular sphingolipid metabolism and adversely affects cell growth. Journal of lipid research. 2022 09; 63(9):100259. doi: 10.1016/j.jlr.2022.100259. [PMID: 35948172]
  • Faris Zaibaq, Tyrone Dowdy, Mioara Larion. Targeting the Sphingolipid Rheostat in Gliomas. International journal of molecular sciences. 2022 Aug; 23(16):. doi: 10.3390/ijms23169255. [PMID: 36012521]
  • Thanh Nha Uyen Le, Toan Q Nguyen, Pazhanichamy Kalailingam, Yen Thi Kim Nguyen, Viresh Krishnan Sukumar, Clarissa Kai Hui Tan, Farhana Tukijan, Ludovic Couty, Zafrul Hasan, Ilaria Del Gaudio, Markus R Wenk, Amaury Cazenave-Gassiot, Eric Camerer, Long N Nguyen. Mfsd2b and Spns2 are essential for maintenance of blood vessels during development and in anaphylactic shock. Cell reports. 2022 08; 40(7):111208. doi: 10.1016/j.celrep.2022.111208. [PMID: 35977478]
  • Pei-Yun Chiang, Avijit K Adak, Wei-Lun Liang, Chen-Yen Tsai, Hsin-Kai Tseng, Jing-Yan Cheng, Jih Ru Hwu, Alice L Yu, Jung-Tung Hung, Chun-Cheng Lin. Chemoenzymatic Synthesis of Globo-series Glycosphingolipids and Evaluation of Their Immunosuppressive Activities. Chemistry, an Asian journal. 2022 Aug; 17(16):e202200403. doi: 10.1002/asia.202200403. [PMID: 35616406]
  • Michela Terlizzi, Chiara Colarusso, Pasquale Somma, Ilaria De Rosa, Luigi Panico, Aldo Pinto, Rosalinda Sorrentino. S1P-Induced TNF-α and IL-6 Release from PBMCs Exacerbates Lung Cancer-Associated Inflammation. Cells. 2022 08; 11(16):. doi: 10.3390/cells11162524. [PMID: 36010601]
  • Hironari Kawai, Yosuke Osawa, Michitaka Matsuda, Tomoyuki Tsunoda, Keisuke Yanagida, Daisuke Hishikawa, Miku Okawara, Yuzuru Sakamoto, Tomonari Shimagaki, Yuriko Tsutsui, Yuichi Yoshida, Shiori Yoshikawa, Kana Hashi, Hiroyoshi Doi, Taizo Mori, Taiji Yamazoe, Sachiyo Yoshio, Masaya Sugiyama, Daisuke Okuzaki, Haruki Komatsu, Ayano Inui, Miwa Tamura-Nakano, Chinatsu Oyama, Hideo Shindou, Hironori Kusano, Masayoshi Kage, Toru Ikegami, Katsuhiko Yanaga, Tatsuya Kanto. Sphingosine-1-phosphate promotes tumor development and liver fibrosis in mouse model of congestive hepatopathy. Hepatology (Baltimore, Md.). 2022 07; 76(1):112-125. doi: 10.1002/hep.32256. [PMID: 34855990]
  • Gary Álvarez Bravo, René Robles Cedeño, Marc Puig Casadevall, Lluís Ramió-Torrentà. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 2022 06; 11(13):. doi: 10.3390/cells11132058. [PMID: 35805142]
  • Russell Fritzemeier, Daniel Foster, Ashley Peralta, Michael Payette, Yugesh Kharel, Tao Huang, Kevin R Lynch, Webster L Santos. Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors. Journal of medicinal chemistry. 2022 06; 65(11):7656-7681. doi: 10.1021/acs.jmedchem.1c02171. [PMID: 35609189]
  • Lin Cheng, Lantian Su, Xiaowen Tian, Fan Xia, Chang Zhao, Wei Yan, Zhenhua Shao. A Pipeline to Investigate the Structures and Signaling Pathways of Sphingosine 1-Phosphate Receptors. Journal of visualized experiments : JoVE. 2022 06; ?(184):. doi: 10.3791/64054. [PMID: 35758708]
  • Gangli Cheng, Lu Zheng. Regulation of the apolipoprotein M signaling pathway: a review. Journal of receptor and signal transduction research. 2022 Jun; 42(3):285-292. doi: 10.1080/10799893.2021.1924203. [PMID: 34006168]
  • Charlotte M Beddoes, Gert S Gooris, David J Barlow, M Jayne Lawrence, Robert M Dalgliesh, Marc Malfois, Bruno Demé, Joke A Bouwstra. The importance of ceramide headgroup for lipid localisation in skin lipid models. Biochimica et biophysica acta. Biomembranes. 2022 06; 1864(6):183886. doi: 10.1016/j.bbamem.2022.183886. [PMID: 35143742]
  • Patrice Therond, M John Chapman. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment. Current opinion in lipidology. 2022 06; 33(3):199-207. doi: 10.1097/mol.0000000000000825. [PMID: 35695616]
  • Keiko Nakashima, Yukie Hirahara, Taro Koike, Susumu Tanaka, Keizo Gamo, Souichi Oe, Shinichi Hayashi, Ryohei Seki-Omura, Yousuke Nakano, Chisato Ohe, Takashi Yoshida, Yosky Kataoka, Masayuki Tsuda, Tatsuyuki Yamashita, Koichi Honke, Masaaki Kitada. Sulfatide with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs in renal intercalated cells. Journal of lipid research. 2022 06; 63(6):100210. doi: 10.1016/j.jlr.2022.100210. [PMID: 35439525]