GlcNAc(b1-4)GlcNAc(b1-4)GlcNAc (BioDeep_00000899174)
代谢物信息卡片
化学式: C24H41N3O16 (627.2486706000001)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 16.67%
分子结构信息
SMILES: CC(=O)NC1C(C(C(OC1O)CO)OC2C(C(C(C(O2)CO)OC3C(C(C(C(O3)CO)O)O)NC(=O)C)O)NC(=O)C)O
InChI: InChI=1S/C24H41N3O16/c1-7(31)25-13-18(36)20(11(5-29)39-22(13)38)42-24-15(27-9(3)33)19(37)21(12(6-30)41-24)43-23-14(26-8(2)32)17(35)16(34)10(4-28)40-23/h10-24,28-30,34-38H,4-6H2,1-3H3,(H,25,31)(H,26,32)(H,27,33)/t10-,11-,12-,13-,14-,15-,16-,17-,18-,19-,20-,21-,22?,23+,24+/m1/s1
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
36 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(8)
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(28)
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + a chitodextrin ⟶ N,N',N''-triacetylchitotriose + N,N'-diacetylchitobiose
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuichiro Kezuka, Masaki Kojima, Ryoji Mizuno, Kazushi Suzuki, Takeshi Watanabe, Takamasa Nonaka. Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering.
Proteins.
2010 Aug; 78(10):2295-305. doi:
10.1002/prot.22742
. [PMID: 20544965] - Julie Beneteau, Denis Renard, Laurent Marché, Elise Douville, Laurence Lavenant, Yvan Rahbé, Didier Dupont, Françoise Vilaine, Sylvie Dinant. Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis.
Plant physiology.
2010 Jul; 153(3):1345-61. doi:
10.1104/pp.110.153882
. [PMID: 20442276] - Yuichiro Kezuka, Manabu Ohishi, Yoshikane Itoh, Jun Watanabe, Masaru Mitsutomi, Takeshi Watanabe, Takamasa Nonaka. Structural studies of a two-domain chitinase from Streptomyces griseus HUT6037.
Journal of molecular biology.
2006 Apr; 358(2):472-84. doi:
10.1016/j.jmb.2006.02.013
. [PMID: 16516924] - Nuria Aboitiz, Miquel Vila-Perelló, Patrick Groves, Juan Luis Asensio, David Andreu, Francisco Javier Cañada, Jesús Jiménez-Barbero. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.
Chembiochem : a European journal of chemical biology.
2004 Sep; 5(9):1245-55. doi:
10.1002/cbic.200400025
. [PMID: 15368576] - Giorgio Colombo, Massimiliano Meli, Javier Cañada, Juan Luis Asensio, Jesús Jiménez-Barbero. Toward the understanding of the structure and dynamics of protein-carbohydrate interactions: molecular dynamics studies of the complexes between hevein and oligosaccharidic ligands.
Carbohydrate research.
2004 Apr; 339(5):985-94. doi:
10.1016/j.carres.2003.10.030
. [PMID: 15010306] - Ingo Damm, Ulrike Mikkat, Frank Kirchhoff, Sabine Böckmann, Ludwig Jonas. Inhibitory effect of the lectin wheat germ agglutinin on the binding of 125I-CCK-8s to the CCK-A and -B receptors of AR42J cells.
Pancreas.
2004 Jan; 28(1):31-7. doi:
10.1097/00006676-200401000-00005
. [PMID: 14707727] - Antje Germer, Clemens Mügge, Martin G Peter, Antje Rottmann, Erich Kleinpeter. Solution- and bound-state conformational study of N,N',N'-triacetyl chitotriose and other analogous potential inhibitors of hevamine: application of trNOESY and STD NMR spectroscopy.
Chemistry (Weinheim an der Bergstrasse, Germany).
2003 May; 9(9):1964-73. doi:
10.1002/chem.200204231
. [PMID: 12740843]