aldehydo-D-ribose 5-phosphate (BioDeep_00000898541)
代谢物信息卡片
化学式: C5H9O8P-2 (228.0035)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C(C(C(C=O)O)O)O)OP(=O)([O-])[O-]
InChI: InChI=1S/C5H11O8P/c6-1-3(7)5(9)4(8)2-13-14(10,11)12/h1,3-5,7-9H,2H2,(H2,10,11,12)/p-2/t3-,4+,5-/m0/s1
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
100 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(100)
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-glucopyranose 6-phosphate + NADP+ ⟶ 6-phospho D-glucono-1,5-lactone + H+ + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- Calvin-Benson-Bassham cycle:
D-glyceraldehyde 3-phosphate + NADP+ + phosphate ⟶ 13-DPG + H+ + NADPH
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
ATP + D-ribulose 5-phosphate ⟶ ADP + D-ribulose-1,5-bisphosphate + H+
- pentose phosphate pathway:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Calvin-Benson-Bassham cycle:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Calvin-Benson-Bassham cycle:
ATP + D-ribulose 5-phosphate ⟶ ADP + D-ribulose-1,5-bisphosphate + H+
- oxygenic photosynthesis:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- pentose phosphate pathway:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- oxygenic photosynthesis:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway (non-oxidative branch):
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
ATP + D-ribulose 5-phosphate ⟶ ADP + D-ribulose-1,5-bisphosphate + H+
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- pentose phosphate pathway:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
ATP + D-ribulose 5-phosphate ⟶ ADP + D-ribulose-1,5-bisphosphate + H+
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- oxygenic photosynthesis:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- oxygenic photosynthesis:
D-ribulose 5-phosphate ⟶ D-xylulose 5-phosphate
- oxygenic photosynthesis:
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
- pentose phosphate pathway:
D-gluconate 6-phosphate + NADP+ ⟶ CO2 + D-ribulose 5-phosphate + NADPH
- Rubisco shunt:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- Calvin-Benson-Bassham cycle:
ATP + D-ribulose 5-phosphate ⟶ ADP + D-ribulose-1,5-bisphosphate + H+
- pentose phosphate pathway (non-oxidative branch):
D-ribose 5-phosphate ⟶ D-ribulose 5-phosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Masahiro Karikomi, Noriaki Katayama, Takashi Osanai. Pyruvate kinase 2 from Synechocystis sp. PCC 6803 increased substrate affinity via glucose-6-phosphate and ribose-5-phosphate for phosphoenolpyruvate consumption.
Plant molecular biology.
2024 May; 114(3):60. doi:
10.1007/s11103-023-01401-0
. [PMID: 38758412] - Vasilios M E Andriotis, Alison M Smith. The plastidial pentose phosphate pathway is essential for postglobular embryo development in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America.
2019 07; 116(30):15297-15306. doi:
10.1073/pnas.1908556116
. [PMID: 31296566] - Alexander Klaus, Tim Baldensperger, Roman Fiedler, Matthias Girndt, Marcus A Glomb. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions.
Journal of agricultural and food chemistry.
2018 Feb; 66(6):1498-1508. doi:
10.1021/acs.jafc.7b05472
. [PMID: 29400466] - Stephanie C Morriss, Xiaoyi Liu, Brice E Floyd, Diane C Bassham, Gustavo C MacIntosh. Cell growth and homeostasis are disrupted in arabidopsis rns2-2 mutants missing the main vacuolar RNase activity.
Annals of botany.
2017 Nov; 120(6):911-922. doi:
10.1093/aob/mcx099
. [PMID: 28961890] - Maija Puhka, Maarit Takatalo, Maria-Elisa Nordberg, Sami Valkonen, Jatin Nandania, Maria Aatonen, Marjo Yliperttula, Saara Laitinen, Vidya Velagapudi, Tuomas Mirtti, Olli Kallioniemi, Antti Rannikko, Pia R-M Siljander, Taija Maria Af Hällström. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes.
Theranostics.
2017; 7(16):3824-3841. doi:
10.7150/thno.19890
. [PMID: 29109780] - Claudia Vanesa Piattoni, Diego Martín Bustos, Sergio Adrián Guerrero, Alberto Álvaro Iglesias. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate.
Plant physiology.
2011 Jul; 156(3):1337-50. doi:
10.1104/pp.111.177261
. [PMID: 21546456] - Cyril Moccand, Markus Kaufmann, Teresa B Fitzpatrick. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.
PloS one.
2011 Jan; 6(1):e16042. doi:
10.1371/journal.pone.0016042
. [PMID: 21283685] - Yuqing Xiong, Christopher DeFraia, Donna Williams, Xudong Zhang, Zhonglin Mou. Deficiency in a cytosolic ribose-5-phosphate isomerase causes chloroplast dysfunction, late flowering and premature cell death in Arabidopsis.
Physiologia plantarum.
2009 Nov; 137(3):249-63. doi:
10.1111/j.1399-3054.2009.01276.x
. [PMID: 19744161] - Gui-Lan Li, Xiang Liu, Jie Nan, Erik Brostromer, Lan-Fen Li, Xiao-Dong Su. Open-closed conformational change revealed by the crystal structures of 3-keto-L-gulonate 6-phosphate decarboxylase from Streptococcus mutans.
Biochemical and biophysical research communications.
2009 Apr; 381(3):429-33. doi:
10.1016/j.bbrc.2009.02.049
. [PMID: 19222992] - Thomas Raschle, Davide Speziga, Wolfgang Kress, Cyril Moccand, Peter Gehrig, Nikolaus Amrhein, Eilika Weber-Ban, Teresa B Fitzpatrick. Intersubunit cross-talk in pyridoxal 5'-phosphate synthase, coordinated by the C terminus of the synthase subunit.
The Journal of biological chemistry.
2009 Mar; 284(12):7706-18. doi:
10.1074/jbc.m804728200
. [PMID: 19074821] - Thomas Raschle, Duilio Arigoni, René Brunisholz, Helene Rechsteiner, Nikolaus Amrhein, Teresa B Fitzpatrick. Reaction mechanism of pyridoxal 5'-phosphate synthase. Detection of an enzyme-bound chromophoric intermediate.
The Journal of biological chemistry.
2007 Mar; 282(9):6098-105. doi:
10.1074/jbc.m610614200
. [PMID: 17189272] - Hairong Huang, Michael S Scherman, Wim D'Haeze, Danny Vereecke, Marcelle Holsters, Dean C Crick, Michael R McNeil. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis.
The Journal of biological chemistry.
2005 Jul; 280(26):24539-43. doi:
10.1074/jbc.m504068200
. [PMID: 15878857] - Jérôme Delplanque, Ghislain Delpierre, Fred R Opperdoes, Emile Van Schaftingen. Tissue distribution and evolution of fructosamine 3-kinase and fructosamine 3-kinase-related protein.
The Journal of biological chemistry.
2004 Nov; 279(45):46606-13. doi:
10.1074/jbc.m407678200
. [PMID: 15331600] - Sergio Esposito, Graziella Massaro, Vincenza Vona, Vittoria Di Martino Rigano, Simona Carfagna. Glutamate synthesis in barley roots: the role of the plastidic glucose-6-phosphate dehydrogenase.
Planta.
2003 Feb; 216(4):639-47. doi:
10.1007/s00425-002-0892-4
. [PMID: 12569406] - S D Sharma, B N Pandey, K P Mishra, S Sivakami. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
Journal of biochemistry, molecular biology, and biophysics : JBMBB : the official journal of the Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB).
2002 Aug; 6(4):233-42. doi:
10.1080/10258140290031554
. [PMID: 12186738] - A Tabernero, C Jiménez, A Velasco, C Giaume, J M Medina. The enhancement of glucose uptake caused by the collapse of gap junction communication is due to an increase in astrocyte proliferation.
Journal of neurochemistry.
2001 Aug; 78(4):890-8. doi:
10.1046/j.1471-4159.2001.00476.x
. [PMID: 11520909] - G Nowak, R G Schnellmann. Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells.
The American journal of physiology.
1995 Nov; 269(5 Pt 1):C1317-25. doi:
10.1152/ajpcell.1995.269.5.c1317
. [PMID: 7491924] - K K Arora, J F Williams. Introduction and metabolism of pentose and hexose phosphates in permeabilized Morris hepatoma 5123TC cells.
Cell biochemistry and function.
1987 Oct; 5(4):289-300. doi:
10.1002/cbf.290050408
. [PMID: 2445500] - G Gstraunthaler, H W Harris, J S Handler. Precursors of ribose 5-phosphate suppress expression of glucose-regulated proteins in LLC-PK1 cells.
The American journal of physiology.
1987 Feb; 252(2 Pt 1):C239-43. doi:
10.1152/ajpcell.1987.252.2.c239
. [PMID: 3103465] - D C McFarland, C N Coon. Purine metabolism in high and low uric acid lines of chickens: phosphoribosylpyrophosphate (PRPP) synthetase activities and PRPP pool sizes.
Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.).
1983 Dec; 174(3):407-14. doi:
10.3181/00379727-174-41755
. [PMID: 6320203] - P Horton, C Foyer. Relationships between protein phosphorylation and electron transport in the reconstituted chloroplast system.
The Biochemical journal.
1983 Feb; 210(2):517-21. doi:
10.1042/bj2100517
. [PMID: 6344866] - A CAZORLA, D LOAYZA. Formation of ketopentoses, beginning with ribose-5-phosphate, in the serum of patients with cancer.
Journal of the National Cancer Institute.
1960 Nov; 25(?):1121-6. doi:
NULL
. [PMID: 13691797] - L OLIVA, F MISURALE, P POMINI, P VALLI. [Behavior of ribose-5-phosphate in the early phase of reaction to roentgen radiations].
Minerva medica.
1958 Sep; 49(78):3694-5. doi:
NULL
. [PMID: 13612944] - F H BRUNS, E DUNWALD, E NOLTMANN. [Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum].
Biochemische Zeitschrift.
1958; 330(6):497-508. doi:
NULL
. [PMID: 13596392] - N PASETTO, P POMINI. [Behavior of pentoses & ribose-5-phosphate in maternal & fetal organs].
Bollettino della Societa italiana di biologia sperimentale.
1957 Jul; 33(7):1074-5. doi:
NULL
. [PMID: 13510431] - . .
.
. doi:
. [PMID: 11283793]