Sulfite (BioDeep_00000897183)
代谢物信息卡片
化学式: O3S-2 (79.956817)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 47.9%
分子结构信息
SMILES: [O-]S(=O)[O-]
InChI: InChI=1S/H2O3S/c1-4(2)3/h(H2,1,2,3)/p-2
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:33554
- ChEBI: CHEBI:33543
- ChEBI: CHEBI:17359
- PubChem: 1099
- MeSH: Sulfites
- CAS: 14265-45-3
分类词条
相关代谢途径
Reactome(4)
BioCyc(9)
- alkylnitronates degradation
- methanesulfonate degradation
- dimethyl sulfide degradation II (oxidation)
- L-tryptophan degradation I (via anthranilate)
- superpathway of L-lysine degradation
- L-lysine degradation V
- 3,3'-disulfanediyldipropannoate degradation
- superpathway of L-methionine salvage and degradation
- coenzyme M biosynthesis I
PlantCyc(0)
代谢反应
599 个相关的代谢反应过程信息。
Reactome(83)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Degradation of cysteine and homocysteine:
3MPYR + MPST ⟶ PYR + Q8I5Y1
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
BioCyc(193)
- benzenesulfonate degradation:
NADH + O2 + benzenesulfonate ⟶ NAD+ + catechol + sulfite
- benzenesulfonate degradation:
NADH + O2 + benzenesulfonate ⟶ NAD+ + catechol + sulfite
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation III (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- methanesulfonate degradation:
NADH + O2 + methanesulfonate ⟶ H2O + NAD+ + formaldehyde + sulfite
- dimethyl sulfide degradation II (oxidation):
H+ + NADPH + O2 + dimethyl sulfide ⟶ H2O + NADP+ + dimethyl sulfoxide
- methanesulfonate degradation:
NADH + O2 + methanesulfonate ⟶ H2O + NAD+ + formaldehyde + sulfite
- methanesulfonate degradation:
NADH + O2 + methanesulfonate ⟶ H2O + NAD+ + formaldehyde + sulfite
- 4-toluenesulfonate degradation II:
4-toluenesulfonate + NADH + O2 ⟶ 4-methylcatechol + NAD+ + sulfite
- hypotaurine degradation:
2-sulfinoacetaldehyde + H2O ⟶ H+ + acetaldehyde + sulfite
- sulfite oxidation:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glu
- superpathway of methionine degradation:
2-oxobutanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + propanoyl-CoA
- sulfide oxidation IV (metazoa):
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfoacetaldehyde degradation I:
H+ + acetyl phosphate + sulfite ⟶ phosphate + sulfoacetaldehyde
- dissimilatory sulfate reduction I (to hydrogen sufide)):
ATP + H+ + sulfate ⟶ APS + diphosphate
- thiosulfate disproportionation I (thiol-dependent):
a thiol + thiosulfate ⟶ H+ + a disulfide + hydrogen sulfide + sulfite
- superpathway of thiosulfate metabolism (Desulfovibrio sulfodismutans):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- thiosulfate disproportionation III (quinone):
H+ + MQ + hydrogen sulfide + sulfite ⟶ MQH2 + thiosulfate
- thiosulfate disproportionation II (cytochrome):
an oxidized cytochrome c3 + hydrogen sulfide + sulfite ⟶ H+ + a reduced cytochrome c3 + thiosulfate
- sulfoquinovosyl diacylglycerol biosynthesis:
H2O + UDP-α-D-sulfoquinovopyranose ⟶ H+ + UDP-α-D-glucose + sulfite
- thiosulfate oxidation II (via tetrathionate):
A + H2O + a [TusA]-L-cysteine-S-thiosulfonate ⟶ A(H2) + H+ + a [TusA]-L-cysteine + sulfite
- coenzyme M biosynthesis II:
3-phospho-L-serine + H+ + sulfite ⟶ L-cysteate + phosphate
- coenzyme M biosynthesis I:
(2R)-phospho-3-sulfolactate ⟶ H+ + phosphoenolpyruvate + sulfite
- assimilatory sulfate reduction I:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- assimilatory sulfate reduction II:
H2O + an oxidized ferredoxin [iron-sulfur] cluster + hydrogen sulfide ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster + sulfite
- assimilatory sulfate reduction III:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- (R)-cysteate degradation:
(2R)-3-sulfolactate ⟶ H+ + pyruvate + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- 3,3'-thiodipropanoate degradation:
3-sulfinopropanoyl-CoA + H2O ⟶ H+ + propanoyl-CoA + sulfite
- ethanedisulfonate degradation:
NADH + O2 + ethanedisulfonate ⟶ H2O + NAD+ + sulfite + sulfoacetaldehyde
- 3,3'-disulfanediyldipropannoate degradation:
3-sulfinopropanoyl-CoA + H2O ⟶ H+ + propanoyl-CoA + sulfite
- two-component alkanesulfonate monooxygenase:
FMNH2 + O2 + an alkylsulfonate ⟶ FMN + H+ + H2O + an aldehyde + sulfite
- sulfite oxidation V (SoeABC):
H2O + MQ + sulfite ⟶ MQH2 + sulfate
- superpathway of sulfur metabolism (Desulfocapsa sulfoexigens):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- sulfur oxidation II (Fe+3-dependent):
Fe3+ + H2O + sulfite ⟶ Fe2+ + H+ + sulfate
- sulfur oxidation I (aerobic):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- sulfite oxidation I:
H2O + an oxidized c-type cytochrome + sulfite ⟶ H+ + a reduced c-type cytochrome + sulfate
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- orthanilate degradation:
(2Z,4E)-2-hydroxy-6-oxo-6-sulfonatohexa-2,4-dienoate + H2O ⟶ (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + H+ + sulfite
- dibenzothiophene desulfurization:
FMNH2 + O2 + dibenzothiophene-5,5-dioxide ⟶ 2'-hydroxybiphenyl-2-sulfinate + FMN + H+ + H2O
- sulfide oxidation IV (metazoa):
GSSH + H+ + sulfite ⟶ glutathione + thiosulfate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- sulfur disproportionation I (anaerobic):
H2O + S0 ⟶ H+ + hydrogen sulfide + sulfite
- sulfur disproportionation II (aerobic):
H2O + O2 + S0 ⟶ H+ + hydrogen sulfide + sulfite
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- sulfite oxidation III:
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation II:
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- sulfur oxidation IV (intracellular sulfur):
a [DsrC]-S-sulfo-L-cysteine ⟶ H+ + a [DsrC protein] with an intramolecular disulfide bond + sulfite
- superpathway of sulfur oxidation (Acidianus ambivalens):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- mercaptosuccinate degradation:
H2O + sulfinosuccinate ⟶ H+ + succinate + sulfite
- L-cysteine degradation I:
3-sulfinopyruvate + H2O ⟶ H+ + pyruvate + sulfite
- superpathway of sulfide oxidation (phototrophic sulfur bacteria):
A + AMP + H+ + sulfite ⟶ A(H2) + APS
- superpathway of taurine degradation:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- superpathway of tetrathionate reduction (Salmonella typhimurium):
H+ + MQ + hydrogen sulfide + sulfite ⟶ MQH2 + thiosulfate
- superpathway of sulfide oxidation (Starkeya novella):
H2O + an oxidized c-type cytochrome + sulfite ⟶ H+ + a reduced c-type cytochrome + sulfate
- superpathway of sulfide oxidation (Acidithiobacillus ferrooxidans):
Fe3+ + H2O + sulfite ⟶ Fe2+ + H+ + sulfate
- sulfolactate degradation III:
H2O + L-cysteate ⟶ H+ + ammonium + pyruvate + sulfite
- superpathway of sulfolactate degradation:
H2O + L-cysteate ⟶ H+ + ammonium + pyruvate + sulfite
- sulfolactate degradation I:
(2R)-3-sulfolactate ⟶ H+ + pyruvate + sulfite
- sulfolactate degradation II:
H+ + acetyl phosphate + sulfite ⟶ phosphate + sulfoacetaldehyde
- 4-toluenesulfonate degradation I:
4-sulfobenzoate + NADH + O2 ⟶ NAD+ + protocatechuate + sulfite
- superpathway of L-methionine salvage and degradation:
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- 4-sulfocatechol degradation:
4-sulfomuconolactone + H2O ⟶ 2-maleylacetate + H+ + sulfite
- dissimilatory sulfate reduction II (to thiosulfate):
ATP + H+ + sulfate ⟶ APS + diphosphate
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- assimilatory sulfate reduction I:
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfoquinovosyl diacylglycerol biosynthesis:
H2O + UDP-α-D-sulfoquinovopyranose ⟶ H+ + UDP-α-D-glucose + sulfite
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- sulfate reduction II (assimilatory):
AMP + GSSG + H+ + sulfite ⟶ APS + glutathione
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + Glu
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- assimilatory sulfate reduction I:
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- superpathway of sulfate assimilation and cysteine biosynthesis:
3',5'-ADP + H+ + an oxidized thioredoxin + sulfite ⟶ PAPS + a reduced thioredoxin
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfate reduction III (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- 4-sulfocatechol degradation:
4-sulfomuconolactone + H2O ⟶ 2-maleylacetate + H+ + sulfite
- assimilatory sulfate reduction I:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- superpathway of sulfate assimilation and cysteine biosynthesis:
H2O + NADP+ + hydrogen sulfide ⟶ H+ + NADPH + sulfite
- two-component alkanesulfonate monooxygenase:
FMNH2 + O2 + an alkylsulfonate ⟶ FMN + H+ + H2O + an aldehyde + sulfite
- sulfite oxidation III:
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of methionine degradation:
S-adenosyl-L-homocysteine + H2O ⟶ L-homocysteine + adenosine
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfur metabolism:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- L-cysteine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- thiosulfate assimilation:
O-acetyl-L-serine + thiosulfate ⟶ H+ + S-sulfo-L-cysteine + acetate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfino-L-alanine ⟶ 3-sulfinopyruvate + glu
- assimilatory sulfate reduction I:
ATP + H+ + sulfate ⟶ APS + diphosphate
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phosphooxypyruvate + glu
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinopyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae):
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfolipid biosynthesis:
H2O + UDP-α-D-sulfoquinovopyranose ⟶ H+ + UDP-α-D-glucose + sulfite
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction II (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfate reduction III (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- sulfolipid biosynthesis:
H+ + UDP-α-D-glucose + sulfite ⟶ H2O + UDP-α-D-sulfoquinovopyranose
- sulfolactate degradation III:
(R)-cysteate + H2O ⟶ H+ + ammonia + bisulfite + pyruvate
- sulfate reduction I (assimilatory):
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate reduction II (assimilatory):
ATP + H+ + sulfate ⟶ adenosine 5'-phosphosulfate + diphosphate
- coenzyme M biosynthesis II:
H2O + sulfoethylcysteine ⟶ H+ + ammonia + coenzyme M + pyruvate
- (R)-cysteate degradation:
(R)-cysteate + 2-oxoglutarate ⟶ 3-sulfopyruvate + glt
- L-cysteine degradation I:
2-oxoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + glt
- superpathway of sulfate assimilation and cysteine biosynthesis:
2-oxoglutarate + 3-phospho-L-serine ⟶ 3-phospho-hydroxypyruvate + glt
- thiosulfate disproportionation II (non thiol-dependent):
A(H2) + thiosulfate ⟶ A + H+ + hydrogen sulfide + sulfite
- superpathway of tetrathionate reduction (Salmonella typhimurium):
A + H2O + hydrogen sulfide ⟶ A(H2) + H+ + sulfite
- sulfolactate degradation II:
3-sulfopyruvate + H+ ⟶ CO2 + sulfoacetaldehyde
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- superpathway of L-methionine biosynthesis (by sulfhydrylation):
2-oxoglutarate + asp ⟶ glt + oxaloacetate
- sulfate reduction I (assimilatory):
ATP + H+ + sulfate ⟶ APS + diphosphate
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- sulfite oxidation III:
ATP + H+ + sulfate ⟶ APS + diphosphate
- thiosulfate disproportionation II (cytochrome):
an oxidized cytochrome c3 + hydrogen sulfide + sulfite ⟶ H+ + a reduced cytochrome c3 + thiosulfate
- sulfate reduction V (dissimilatory, to thiosulfate):
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate reduction IV (dissimilatory, to hydrogen sufide)):
ATP + H+ + sulfate ⟶ APS + diphosphate
- coenzyme M biosynthesis I:
H2O + sulfoethylcysteine ⟶ ammonium + coenzyme M + pyruvate
WikiPathways(3)
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Cysteine and methionine catabolism:
Cystine ⟶ S-sulfocysteine
- Ethylmalonic encephalopathy:
SO3 2- (sulfite) ⟶ SO4 2- (sulfate)
Plant Reactome(256)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
INOH(0)
PlantCyc(24)
- thiosulfate disproportionation IV (rhodanese):
hydrogen cyanide + thiosulfate ⟶ H+ + sulfite + thiocyanate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfide oxidation III (persulfide dioxygenase):
S-sulfinatoglutathione + H2O ⟶ H+ + glutathione + sulfite
- sulfoquinovosyl diacylglycerol biosynthesis:
H2O + UDP-α-D-sulfoquinovopyranose ⟶ H+ + UDP-α-D-glucose + sulfite
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
COVID-19 Disease Map(0)
PathBank(40)
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Taurine Metabolism:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Taurine Metabolism:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Thiosulfate Disproportionation III:
Adenosine triphosphate + Thiosulfate + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Thiosulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfate/Sulfite Metabolism:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Sulfite Oxidase Deficiency:
Estrone + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Estrone sulfate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Thiosulfate Disproportionation III:
Adenosine triphosphate + Thiosulfate + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Thiosulfate
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hui Liu, Xiao-Qian Wu, Xiang-Ling Qin, Jin-Hao Zhu, Jin-Di Xu, Shan-Shan Zhou, Ming Kong, Hong Shen, Jie-Ge Huo, Song-Lin Li, He Zhu. Metals/bisulfite system involved generation of 24-sulfonic-25-ene ginsenoside Rg1, a potential quality control marker for sulfur-fumigated ginseng.
Food chemistry.
2024 Aug; 448(?):139112. doi:
10.1016/j.foodchem.2024.139112
. [PMID: 38569404] - Stefan Paula, Andres Acosta, Naiki Judge, Stephanie Ramirez, Amaan Sandhu, David Deamer. Modelling energy-harvesting processes in primitive cells: Proton transport across bilayers driven by the oxidation of sulfite.
Bio Systems.
2024 Apr; 238(?):105189. doi:
10.1016/j.biosystems.2024.105189
. [PMID: 38479655] - Qirui Wang, Zixu Wang, Chen Xu, Daqiang Wu, Tianming Wang, Changzhong Wang, Jing Shao. Physical impediment to sodium houttuyfonate conversely reinforces β-glucan exposure stimulated innate immune response to Candida albicans.
Medical mycology.
2024 Mar; 62(3):. doi:
10.1093/mmy/myae014
. [PMID: 38389246] - Yanan Li, Pingping Dong, Zhanpeng Shang, Long Dai, Shaoping Wang, Jiayu Zhang. Unveiling the Chemical Composition of Sulfur-Fumigated Herbs: A Triple Synthesis Approach Using UHPLC-LTQ-Orbitrap MS-A Case Study on Steroidal Saponins in Ophiopogonis Radix.
Molecules (Basel, Switzerland).
2024 Feb; 29(3):. doi:
10.3390/molecules29030702
. [PMID: 38338446] - Jiamin Weng, Hui Wang, Dayou Cheng, Tianjiao Liu, Deyong Zeng, Cuihong Dai, Chengfei Luo. The Effects of DNA Methylation on Cytoplasmic Male Sterility in Sugar Beet.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25021118
. [PMID: 38256191] - Qianqian Zhang, Xiaohong Tang, Yanjin Wang, Ajuan Song, Xiaopeng Yang, Dan Yin, Zezhi Zhang. A novel colorimetric fluorescent probe for sensing bisulfite detection in plant and zebrafish.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jan; 305(?):123559. doi:
10.1016/j.saa.2023.123559
. [PMID: 37866263] - Faisal K Algethami, Basant H Koraim, Ehab A Abdelrahman, Yasmeen G Abou El-Reash, Mahmoud S Rizk, Fatehy M Abdel-Haleem. Ionophore-modified polyaniline-based optode for the determination of hydrogen sulfite levels in beverages, wastewater, and soil.
Analytical methods : advancing methods and applications.
2023 11; 15(45):6275-6285. doi:
10.1039/d3ay01320k
. [PMID: 37955946] - Meiling Zhang, Ye Xiao, Zhe Jiang, Chengqi Yi. Quantifying m6A and Ψ Modifications in the Transcriptome via Chemical-Assisted Approaches.
Accounts of chemical research.
2023 11; 56(21):2980-2991. doi:
10.1021/acs.accounts.3c00436
. [PMID: 37851547] - Chen Chen, Changrui Zhou, Wenge Yang, Yonghong Hu. A FRET-based ratiometric fluorescent probe for SO32- detection in Chinese medicine and living cells.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Nov; 300(?):122902. doi:
10.1016/j.saa.2023.122902
. [PMID: 37244026] - Ralf R Mendel, Günter Schwarz. The History of Animal and Plant Sulfite Oxidase-A Personal View.
Molecules (Basel, Switzerland).
2023 Oct; 28(19):. doi:
10.3390/molecules28196998
. [PMID: 37836841] - Sevim Ercan, Goksun Basaranlar. Effects of ghrelin on sulfite induced changes in lipid peroxidation, spatial memory, and locomotor activity in rats.
Neurological research.
2023 May; 45(5):423-428. doi:
10.1080/01616412.2022.2149535
. [PMID: 36449323] - Meiling Zhang, Zhe Jiang, Yichen Ma, Wenqing Liu, Yuan Zhuang, Bo Lu, Kai Li, Jinying Peng, Chengqi Yi. Quantitative profiling of pseudouridylation landscape in the human transcriptome.
Nature chemical biology.
2023 Mar; ?(?):. doi:
10.1038/s41589-023-01304-7
. [PMID: 36997645] - Tieyue Qi, Shuo Zhang, Jingzhao Zhang, Tong Li, Lei Xing, Zhimo Fang, Shanlong An, Zhongfei Xu, Huining Xiao, Lidong Wang. In Situ Reconstruction of Active Catalysis Sites Triggered by Chromium Immobilization for Sulfite Oxidation.
Environmental science & technology.
2023 03; 57(9):3905-3916. doi:
10.1021/acs.est.2c09606
. [PMID: 36812062] - Wendell Jacinto Pereira, Marília de Castro Rodrigues Pappas, Georgios Joannis Pappas. Computational Protocol for DNA Methylation Profiling in Plants Using Restriction Enzyme-Based Genome Reduction.
Methods in molecular biology (Clifton, N.J.).
2023; 2638(?):23-36. doi:
10.1007/978-1-0716-3024-2_3
. [PMID: 36781633] - Ya-Ting Sabrina Chang, Ming-Ren Yen, Pao-Yang Chen. Methylome Imputation by Methylation Patterns.
Methods in molecular biology (Clifton, N.J.).
2023; 2624(?):115-126. doi:
10.1007/978-1-0716-2962-8_8
. [PMID: 36723812] - Mengli Chen, Ting Cheng, Chen Xu, Min Pan, Jiadi Wu, Tianming Wang, Daqiang Wu, Guiming Yan, Changzhong Wang, Jing Shao. Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1α/IL-17 axis by inhibiting cAMP mediated filamentation in Candida albicans-Candida glabrata dual biofilms.
Virulence.
2022 12; 13(1):428-443. doi:
10.1080/21505594.2022.2035066
. [PMID: 35195502] - Lulin Peng, Maohua Yang, Mei Zhang, Mingyan Jia. A ratiometric fluorescent sensor based on carbon dots for rapid determination of bisulfite in sugar.
Food chemistry.
2022 Oct; 392(?):133265. doi:
10.1016/j.foodchem.2022.133265
. [PMID: 35640425] - Zhijing Xiao, Yanke Lu, Yi Zou, Chi Zhang, Li Ding, Kai Luo, Qiaoyu Tang, Yifeng Zhou. Gene Identification, expression analysis and molecular docking of ATP sulfurylase in the selenization pathway of Cardamine hupingshanensis.
BMC plant biology.
2022 Oct; 22(1):491. doi:
10.1186/s12870-022-03872-7
. [PMID: 36253724] - Ping-An Yao, Ke-Zhao Wei, Jia-Hua Feng, Xiao-Ning Liu, Xu Xu, Hong-Yan Cui, Xiao-Chen Zhang, Jian-Ping Gao. Sodium houttuyfonate protects against cardiac injury by regulating cardiac energy metabolism in diabetic rats.
European journal of pharmacology.
2022 Oct; 932(?):175236. doi:
10.1016/j.ejphar.2022.175236
. [PMID: 36044971] - Els Debonne, Merve Silanur Yilmaz, Ozge Sakiyan, Mia Eeckhout. Comparison of antifungal activity of essential oils of clove, lemongrass and thyme for natural preservation of dried apricots.
Food science and technology international = Ciencia y tecnologia de los alimentos internacional.
2022 Oct; 28(7):641-649. doi:
10.1177/10820132211049603
. [PMID: 34726109] - Tslil Gabrieli, Yael Michaeli, Sigal Avraham, Dmitry Torchinsky, Sapir Margalit, Leonie Schütz, Matyas Juhasz, Ceyda Coruh, Nissim Arbib, Zhaohui Sunny Zhou, Julie A Law, Elmar Weinhold, Yuval Ebenstein. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping.
Nucleic acids research.
2022 09; 50(16):e92. doi:
10.1093/nar/gkac460
. [PMID: 35657088] - Shuang Wang, Lei Sun, Manik Prabhu Narsing Rao, Bao-Zhu Fang, Wen-Jun Li. Comparative Genome Analysis of a Novel Alkaliphilic Actinobacterial Species Nesterenkonia haasae.
Polish journal of microbiology.
2022 Sep; 71(3):453-461. doi:
10.33073/pjm-2022-040
. [PMID: 36185029] - Fleur Gawehns, Maarten Postuma, Morgane van Antro, Adam Nunn, Bernice Sepers, Samar Fatma, Thomas P van Gurp, Niels C A M Wagemaker, A Christa Mateman, Slavica Milanovic-Ivanovic, Ivo Groβe, Kees van Oers, Philippine Vergeer, Koen J F Verhoeven. epiGBS2: Improvements and evaluation of highly multiplexed, epiGBS-based reduced representation bisulfite sequencing.
Molecular ecology resources.
2022 Jul; 22(5):2087-2104. doi:
10.1111/1755-0998.13597
. [PMID: 35178872] - Adam Nunn, Christian Otto, Mario Fasold, Peter F Stadler, David Langenberger. Manipulating base quality scores enables variant calling from bisulfite sequencing alignments using conventional bayesian approaches.
BMC genomics.
2022 Jun; 23(1):477. doi:
10.1186/s12864-022-08691-6
. [PMID: 35764934] - Bing Rui, Yangrui Feng, Yanan Wang, Jiawu Deng, Mingqiang Wang, Yi Lyu, Lan Luo. A novel isophorone-derived fluorescent probe for detecting sulfite and the application in monitoring the state of hybridoma cells.
Analytica chimica acta.
2022 May; 1205(?):339723. doi:
10.1016/j.aca.2022.339723
. [PMID: 35414401] - Biplab K Maiti. Cross-talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health.
Chemistry (Weinheim an der Bergstrasse, Germany).
2022 Apr; 28(23):e202104342. doi:
10.1002/chem.202104342
. [PMID: 35080290] - Assylay Kurmanbayeva, Aizat Bekturova, Aigerim Soltabayeva, Dinara Oshanova, Zhadyrassyn Nurbekova, Sudhakar Srivastava, Poonam Tiwari, Arvind Kumar Dubey, Moshe Sagi. Active O-acetylserine-(thiol) lyase A and B confer improved selenium resistance and degrade l-Cys and l-SeCys in Arabidopsis.
Journal of experimental botany.
2022 04; 73(8):2525-2539. doi:
10.1093/jxb/erac021
. [PMID: 35084469] - Julien Guemri, Morgane Pierre-Jean, Solène Brohard, Nouara Oussada, Caroline Horgues, Eric Bonnet, Florence Mauger, Jean-François Deleuze. Methylated ccfDNA from plasma biomarkers of Alzheimer's disease using targeted bisulfite sequencing.
Epigenomics.
2022 04; 14(8):451-468. doi:
10.2217/epi-2021-0491
. [PMID: 35416052] - Jie Chu, ShuLei Li, Ni Chen, Peiyao Wen, Christian Sonne, Nyuk Ling Ma. Structural properties and hydrolysability of recycled poplar residues (Populus L.): Effects of two-step acetic acid and sodium sulphite pre-treatment.
Chemosphere.
2022 Mar; 291(Pt 1):132679. doi:
10.1016/j.chemosphere.2021.132679
. [PMID: 34718007] - Jun Zhang, Shu-Shu Zhong, Ke-Meng Zhao, Ze-Hua Liu, Zhi Dang, Yu Liu. Sulfite may disrupt estrogen homeostasis in human via inhibition of steroid arylsulfatase.
Environmental science and pollution research international.
2022 Mar; 29(13):19913-19917. doi:
10.1007/s11356-021-18416-z
. [PMID: 35098465] - Jin-Shuai Lan, Rui-Feng Zeng, Yu Wang, Lu Zhen, Yun Liu, Rodney J Y Ho, Yue Ding, Tong Zhang. All-in-one: Accurate quantification, on-site detection, and bioimaging of sulfite using a colorimetric and ratiometric fluorescent probe in vitro and in vivo.
Journal of hazardous materials.
2022 02; 424(Pt B):127229. doi:
10.1016/j.jhazmat.2021.127229
. [PMID: 34653860] - Cengiz Kaya, Muhammad Ashraf. Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle.
Environmental pollution (Barking, Essex : 1987).
2022 Feb; 294(?):118608. doi:
10.1016/j.envpol.2021.118608
. [PMID: 34861334] - HueyTyng Lee. Analysis of Bisulfite Sequencing Data Using Bismark and DMRcaller to Identify Differentially Methylated Regions.
Methods in molecular biology (Clifton, N.J.).
2022; 2443(?):451-463. doi:
10.1007/978-1-0716-2067-0_23
. [PMID: 35037220] - Lulu Ni, Shan Jing, Li Zhu, Xue Yang, Xinyue Wang, Su Tu. The Immune Change of the Lung and Bowel in an Ulcerative Colitis Rat Model and the Protective Effect of Sodium Houttuyfonate Combined With Matrine.
Frontiers in immunology.
2022; 13(?):888918. doi:
10.3389/fimmu.2022.888918
. [PMID: 35844499] - Thomas Dugé de Bernonville, Christian Daviaud, Cristian Chaparro, Jörg Tost, Stéphane Maury. From Methylome to Integrative Analysis of Tissue Specificity.
Methods in molecular biology (Clifton, N.J.).
2022; 2505(?):223-240. doi:
10.1007/978-1-0716-2349-7_16
. [PMID: 35732948] - Jialong Liang, Kun Zhang, Jie Yang, Xianfeng Li, Qinglan Li, Yan Wang, Wanshi Cai, Huajing Teng, Zhongsheng Sun. A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing.
Briefings in bioinformatics.
2021 11; 22(6):. doi:
10.1093/bib/bbab201
. [PMID: 34058751] - Kelong Ma, Mengli Chen, Juanjuan Liu, Yuzhu Ge, Tianming Wang, Daqiang Wu, Guiming Yan, Changzhong Wang, Jing Shao. Sodium houttuyfonate attenuates dextran sulfate sodium associated colitis precolonized with Candida albicans through inducing β-glucan exposure.
Journal of leukocyte biology.
2021 11; 110(5):927-937. doi:
10.1002/jlb.4ab0221-324rrrr
. [PMID: 33682190] - Thandikhaya Bambeni, Tawanda Tayengwa, Obert C Chikwanha, Marena Manley, Pieter A Gouws, Jeannine Marais, Olaniyi A Fawole, Cletos Mapiye. Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties.
Meat science.
2021 Nov; 181(?):108609. doi:
10.1016/j.meatsci.2021.108609
. [PMID: 34147962] - Peng Ni, Neng Huang, Fan Nie, Jun Zhang, Zhi Zhang, Bo Wu, Lu Bai, Wende Liu, Chuan-Le Xiao, Feng Luo, Jianxin Wang. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning.
Nature communications.
2021 10; 12(1):5976. doi:
10.1038/s41467-021-26278-9
. [PMID: 34645826] - Fatemeh Ravanrouy, Ali Niazi, Ali Moghadam, Seyed Mohsen Taghavi. MAP30 transgenic tobacco lines: from silencing to inducing.
Molecular biology reports.
2021 Oct; 48(10):6719-6728. doi:
10.1007/s11033-021-06662-w
. [PMID: 34420140] - Aizat Bekturova, Dinara Oshanova, Poonam Tiwari, Zhadyrassyn Nurbekova, Assylay Kurmanbayeva, Aigerim Soltabayeva, Dmitry Yarmolinsky, Sudhakar Srivastava, Veronika Turecková, Miroslav Strnad, Moshe Sagi. Adenosine 5' phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis.
Journal of experimental botany.
2021 09; 72(18):6447-6466. doi:
10.1093/jxb/erab249
. [PMID: 34107028] - Adam Nunn, Christian Otto, Peter F Stadler, David Langenberger. Comprehensive benchmarking of software for mapping whole genome bisulfite data: from read alignment to DNA methylation analysis.
Briefings in bioinformatics.
2021 09; 22(5):. doi:
10.1093/bib/bbab021
. [PMID: 33624017] - Su Kah Goh, Daniel R A Cox, Boris Ka Leong Wong, Ashan Musafer, Tom Witkowski, Hongdo Do, Vijayaragavan Muralidharan, Alexander Dobrovic. A Synthetic DNA Construct to Evaluate the Recovery Efficiency of Cell-Free DNA Extraction and Bisulfite Modification.
Clinical chemistry.
2021 09; 67(9):1201-1209. doi:
10.1093/clinchem/hvab095
. [PMID: 34151944] - Zhi-Peng Huo, Xin-Chi Feng, Yu Wang, Yu-Ting Tian, Feng Qiu. Sulfite as the substrate of C-sulfonate metabolism of α, β-unsaturated carbonyl containing andrographolide: analysis of sulfite in rats' intestinal tract and the reaction kinetics of andrographolide with sulfite.
Chinese journal of natural medicines.
2021 Sep; 19(9):706-712. doi:
10.1016/s1875-5364(21)60094-8
. [PMID: 34561083] - Jing Li, Xueqing Ma, Wei Yang, Chao Guo, Jingying Zhai, Xiaojiang Xie. Enhanced Sulfite-Selective Sensing and Cell Imaging with Fluorescent Nanoreactors Containing a Ratiometric Lipid Peroxidation Sensor.
Analytical chemistry.
2021 08; 93(34):11758-11764. doi:
10.1021/acs.analchem.1c02167
. [PMID: 34410685] - Emilia Bernaś, Grażyna Jaworska. Onion juice and extracts for the inhibition of enzymatic browning mechanisms in frozen Agaricus bisporus mushrooms.
Journal of the science of food and agriculture.
2021 Aug; 101(10):4099-4107. doi:
10.1002/jsfa.11045
. [PMID: 33368384] - Meitong Liu, Jing Lu, Yuelin Chen, Xiaolei Shi, YaZhuo Li, Shuting Yang, Jing Yu, Shuang Guan. Sodium Sulfite-Induced Mast Cell Pyroptosis and Degranulation.
Journal of agricultural and food chemistry.
2021 Jul; 69(27):7755-7764. doi:
10.1021/acs.jafc.1c02436
. [PMID: 34191510] - Qiangwei Li, Yuguo Wang, Lei Xing, Tieyue Qi, Lin Zhang, Jie Liu, Shihan Zhang, Yongliang Ma, Lidong Wang. Selenium uptake and simultaneous catalysis of sulfite oxidation in ammonia-based desulfurization.
Journal of environmental sciences (China).
2021 May; 103(?):207-218. doi:
10.1016/j.jes.2020.10.012
. [PMID: 33743903] - Yumi Abiko, Yusuke Katayama, Masahiro Akiyama, Yoshito Kumagai. Lipophilic compounds in garlic decrease the toxicity of methylmercury by forming sulfur adducts.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Apr; 150(?):112061. doi:
10.1016/j.fct.2021.112061
. [PMID: 33587975] - Liangqiang Wu, Shaolong Qi, Yan Liu, Xinyu Wang, Lubao Zhu, Qingbiao Yang, Jianshi Du, Hai Xu, Yaoxian Li. A novel ratiometric fluorescent probe for differential detection of HSO3- and ClO- and application in cell imaging and tumor recognition.
Analytical and bioanalytical chemistry.
2021 Feb; 413(4):1137-1148. doi:
10.1007/s00216-020-03077-7
. [PMID: 33404747] - Anh Thi Lan Nguyen, Prince G Boakye, Samuel S Besong, Peggy M Tomasula, Enyam S Alamu-Lumor. Improvement of physicochemical properties of reduced-cholesterol butter by the addition of β-sitosteryl oleate.
Journal of food science.
2021 Feb; 86(2):404-410. doi:
10.1111/1750-3841.15573
. [PMID: 33448052] - Hideki Ohmomo, Shohei Komaki, Kanako Ono, Yoichi Sutoh, Tsuyoshi Hachiya, Eri Arai, Hiroyuki Fujimoto, Teruhiko Yoshida, Yae Kanai, Makoto Sasaki, Atsushi Shimizu. Evaluation of clinical formalin-fixed paraffin-embedded tissue quality for targeted-bisulfite sequencing.
Pathology international.
2021 Feb; 71(2):135-140. doi:
10.1111/pin.13054
. [PMID: 33333623] - Ruben Van Paemel, Andries De Koker, Charlotte Vandeputte, Lieke van Zogchel, Tim Lammens, Geneviève Laureys, Jo Vandesompele, Gudrun Schleiermacher, Mathieu Chicard, Nadine Van Roy, Ales Vicha, G A M Tytgat, Nico Callewaert, Katleen De Preter, Bram De Wilde. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study.
Epigenetics.
2021 Jan; 16(2):196-208. doi:
10.1080/15592294.2020.1790950
. [PMID: 32662719] - Pengfei Gong, Yang Jing, Yumeng Liu, Lijian Wang, Chunyan Wu, Zhiqiang Du, Hui Li. Whole-genome bisulfite sequencing of abdominal adipose reveals DNA methylation pattern variations in broiler lines divergently selected for fatness.
Journal of animal science.
2021 Jan; 99(1):. doi:
10.1093/jas/skaa408
. [PMID: 33373456] - Ehsan Khodadadi, Leila Fahmideh, Ehsaneh Khodadadi, Sounkalo Dao, Mehdi Yousefi, Sepehr Taghizadeh, Mohammad Asgharzadeh, Bahman Yousefi, Hossein Samadi Kafil. Current Advances in DNA Methylation Analysis Methods.
BioMed research international.
2021; 2021(?):8827516. doi:
10.1155/2021/8827516
. [PMID: 33824878] - Trung Viet Nguyen, Ryan Lister. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
Methods in molecular biology (Clifton, N.J.).
2021; 2272(?):181-194. doi:
10.1007/978-1-0716-1294-1_10
. [PMID: 34009614] - Marco Catoni, Nicolae Radu Zabet. Analysis of Plant DNA Methylation Profiles Using R.
Methods in molecular biology (Clifton, N.J.).
2021; 2250(?):219-238. doi:
10.1007/978-1-0716-1134-0_21
. [PMID: 33900608] - Ye-Hao Yan, Xiao-Ling Cui, Zhang-Yi Li, Man-Man Ding, Qiao-Ling Che, Jun-Ying Miao, Bao-Xiang Zhao, Zhao-Min Lin. A synergetic FRET/ICT platform-based fluorescence probe for ratiometric imaging of bisulfite in lipid droplets.
Analytica chimica acta.
2020 Nov; 1137(?):47-55. doi:
10.1016/j.aca.2020.09.002
. [PMID: 33153608] - Marta Malinowska, Istvan Nagy, Cornelis A M Wagemaker, Anja K Ruud, Simon F Svane, Kristian Thorup-Kristensen, Christian S Jensen, Birger Eriksen, Lene Krusell, Ahmed Jahoor, Jens Jensen, Lars Bonde Eriksen, Torben Asp. The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth.
The plant genome.
2020 11; 13(3):e20049. doi:
10.1002/tpg2.20049
. [PMID: 33217208] - Catherine Besner Morin, Denis Sasseville. Expanding Patch Testing Beyond the Baseline Series: Usefulness of Customized Antimicrobials, Vehicles, and Cosmetics Series.
Dermatitis : contact, atopic, occupational, drug.
2020 Nov; 31(6):367-372. doi:
10.1097/der.0000000000000674
. [PMID: 33074937] - Anwar E M Noreljaleel, Anke Wilhelm, Susan L Bonnet. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3.
Molecules (Basel, Switzerland).
2020 Oct; 25(21):. doi:
10.3390/molecules25214980
. [PMID: 33126408] - D A Moser, S Müller, E M Hummel, A S Limberg, L Dieckmann, L Frach, J Pakusch, V Flasbeck, M Brüne, J Beygo, L Klein-Hitpass, R Kumsta. Targeted bisulfite sequencing: A novel tool for the assessment of DNA methylation with high sensitivity and increased coverage.
Psychoneuroendocrinology.
2020 10; 120(?):104784. doi:
10.1016/j.psyneuen.2020.104784
. [PMID: 32673938] - Yuanyuan Pan, Minghuan Fu, Xiaohan Chen, Jing Guo, Biao Chen, Xuefei Tao. Dietary methionine restriction attenuates renal ischaemia/reperfusion-induced myocardial injury by activating the CSE/H2S/ERS pathway in diabetic mice.
Journal of cellular and molecular medicine.
2020 09; 24(17):9890-9897. doi:
10.1111/jcmm.15578
. [PMID: 32790060] - Mohan Singh Rajkumar, Rama Shankar, Rohini Garg, Mukesh Jain. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars.
Genomics.
2020 09; 112(5):3537-3548. doi:
10.1016/j.ygeno.2020.04.005
. [PMID: 32278023] - Guiqiao Wang, Weiye Shi, Defang Ma, Baoyu Gao. Impacts of permanganate/bisulfite pre-oxidation on DBP formation during the post chlorine disinfection of ciprofloxacin-contaminated waters.
The Science of the total environment.
2020 Aug; 731(?):138755. doi:
10.1016/j.scitotenv.2020.138755
. [PMID: 32402911] - Rui-Feng Zeng, Jin-Shuai Lan, Tong Wu, Li Liu, Yun Liu, Rodney J Y Ho, Yue Ding, Tong Zhang. A novel mitochondria-targetted near-infrared fluorescent probe for selective and colorimetric detection of sulfite and its application in vitro and vivo.
Food chemistry.
2020 Jul; 318(?):126358. doi:
10.1016/j.foodchem.2020.126358
. [PMID: 32145541] - Yadollah Shahryary, Rashmi R Hazarika, Frank Johannes. MethylStar: A fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data.
BMC genomics.
2020 Jul; 21(1):479. doi:
10.1186/s12864-020-06886-3
. [PMID: 32660416] - Sarah Ø Jensen, Nadia Øgaard, Hans Jørgen Nielsen, Jesper B Bramsen, Claus L Andersen. Enhanced Performance of DNA Methylation Markers by Simultaneous Measurement of Sense and Antisense DNA Strands after Cytosine Conversion.
Clinical chemistry.
2020 07; 66(7):925-933. doi:
10.1093/clinchem/hvaa100
. [PMID: 32460325] - Giulia Crosato, Chiara Nadai, Milena Carlot, Juliano Garavaglia, Denise Righetto Ziegler, Rochele Cassanta Rossi, Juliana De Castilhos, Stefano Campanaro, Laura Treu, Alessio Giacomini, Viviana Corich. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations.
FEMS yeast research.
2020 06; 20(4):. doi:
10.1093/femsyr/foaa028
. [PMID: 32436567] - Emmanouil Kontaxakis, Emmanouil Trantas, Filippos Ververidis. Resveratrol: A Fair Race Towards Replacing Sulfites in Wines.
Molecules (Basel, Switzerland).
2020 May; 25(10):. doi:
10.3390/molecules25102378
. [PMID: 32443913] - Yasemin Gündüztepe, Neslihan Bukan, Enishan Zorlu, Yahya Karaman, Tuğberk Andaç Topkan, Neslihan Gurbuz, Salim Neşelioğlu, Özcan Erel. The evaluation of thiol-disulfıte balance, ischemıa albumın modıfıcation and seruloplazmine as a new oxidatıve stress in mild cognitive impairment and early stage alzheimer's disease patients.
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia.
2020 May; 75(?):188-194. doi:
10.1016/j.jocn.2019.12.026
. [PMID: 32223973] - Yusuke Ito, Hiroyuki Sakai, Hidenori Nagao, Ryota Suzuki, Masato Odawara, Kouichi Minato. Development of a high-performance liquid chromatography-tandem mass spectrometric method for the determination of Methimazole in human blood matrices.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2020 May; 1144(?):122083. doi:
10.1016/j.jchromb.2020.122083
. [PMID: 32251990] - L Bahrenthien, J Kluess, A Berk, S Kersten, J Saltzmann, L Hüther, D Schatzmayr, H E Schwartz-Zimmermann, A Zeyner, S Dänicke. Detoxifying deoxynivalenol (DON)-contaminated feedstuff: consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs.
Mycotoxin research.
2020 May; 36(2):213-223. doi:
10.1007/s12550-019-00385-5
. [PMID: 31960350] - Nowlan H Freese, Elise L Schnabel, Julia A Frugoli. Whole genome bisulfite sequencing of Medicago truncatula A17 wild type and lss mutants.
BMC research notes.
2020 Mar; 13(1):192. doi:
10.1186/s13104-020-05012-6
. [PMID: 32234059] - Juanjuan Liu, Qianqian Li, Changzhong Wang, Jing Shao, Tianming Wang, Daqiang Wu, Kelong Ma, Guiming Yan, Dengke Yin. Antifungal evaluation of traditional herbal monomers and their potential for inducing cell wall remodeling in Candida albicans and Candida auris.
Biofouling.
2020 03; 36(3):319-331. doi:
10.1080/08927014.2020.1759559
. [PMID: 32410461] - Qiang Li, Jiaojiao Nie, Yaming Shan, Yuan Li, Jianshi Du, Lubao Zhu, Qingbiao Yang, Fuquan Bai. Water-soluble fluorescent probe for simultaneous detection of cyanide, hypochlorite and bisulfite at different emission wavelengths.
Analytical biochemistry.
2020 02; 591(?):113539. doi:
10.1016/j.ab.2019.113539
. [PMID: 31837297] - Mustafa Bener, Furkan Burak Şen, Reşat Apak. Novel pararosaniline based optical sensor for the determination of sulfite in food extracts.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2020 Feb; 226(?):117643. doi:
10.1016/j.saa.2019.117643
. [PMID: 31627056] - Martin Schmidt, Magdalena Woloszynska, Michiel Van Bel, Frederik Coppens, Mieke Van Lijsebettens. Plant-RRBS: DNA Methylome Profiling Adjusted to Plant Genomes, Utilizing Efficient Endonuclease Combinations, for Multi-Sample Studies.
Methods in molecular biology (Clifton, N.J.).
2020; 2093(?):65-80. doi:
10.1007/978-1-0716-0179-2_5
. [PMID: 32088889] - Ying Shen, Wei Cong, Ai-Hua Zhang, Xiangcai Meng. Complexity of active medicinal ingredients in radix scutellariae with sodium hydrosulfite exposure.
PloS one.
2020; 15(9):e0238927. doi:
10.1371/journal.pone.0238927
. [PMID: 32956425] - Khushboo Gupta, Rohini Garg. Method for Bisulfite Sequencing Data Analysis for Whole-Genome Level DNA Methylation Detection in Legumes.
Methods in molecular biology (Clifton, N.J.).
2020; 2107(?):127-145. doi:
10.1007/978-1-0716-0235-5_6
. [PMID: 31893445] - Wendell Jacinto Pereira, Marília de Castro Rodrigues Pappas, Dario Grattapaglia, Georgios Joannis Pappas. A cost-effective approach to DNA methylation detection by Methyl Sensitive DArT sequencing.
PloS one.
2020; 15(6):e0233800. doi:
10.1371/journal.pone.0233800
. [PMID: 32497070] - M Teresa Boquete, Niels C A M Wagemaker, Philippine Vergeer, Jeannie Mounger, Christina L Richards. Epigenetic Approaches in Non-Model Plants.
Methods in molecular biology (Clifton, N.J.).
2020; 2093(?):203-215. doi:
10.1007/978-1-0716-0179-2_14
. [PMID: 32088898] - Bassam Lajin, Walter Goessler. Exploring the sulfur species in wine by HPLC-ICPMS/MS.
Analytica chimica acta.
2019 Dec; 1092(?):1-8. doi:
10.1016/j.aca.2019.09.074
. [PMID: 31708021] - Huan Fang, Bixi Zhong, Lei Wei, Xianglin Zhang, Wei Zhang, Xiaowo Wang. [Practical stability of whole-genome bisulfite sequencing using plasma cell-free DNA].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2019 Dec; 35(12):2284-2294. doi:
10.13345/j.cjb.190281
. [PMID: 31880136] - Yan-Hong Qin, Xiao-Yi Jiang, Yuan-Fang Que, Jing-Yi Gu, Tong Wu, Ayinazhaer Aihemaiti, Ke-Xin Shi, Wen-Yu Kang, Bi-Ying Hu, Jin-Shuai Lan, Yue Ding, Tong Zhang. A Ratiometric and Colorimetric Hemicyanine Fluorescent Probe for Detection of SO2 Derivatives and Its Applications in Bioimaging.
Molecules (Basel, Switzerland).
2019 Nov; 24(21):. doi:
10.3390/molecules24214011
. [PMID: 31694349] - Sebastian Rausch, Oliver Hasinger, Thomas König, Anne Schlegel, Gunter Weiss. An automated high throughput solution for DNA extraction and bisulfite-conversion from high volume liquid biopsy specimens: sample preparation for epigenetic analysis.
BMC research notes.
2019 Aug; 12(1):551. doi:
10.1186/s13104-019-4595-3
. [PMID: 31470896] - Gulsah Gundogdu, Yavuz Dodurga, Vural Kucukatay. The sulfite molecule enhances homocysteine toxicity in SH-SY5Y cells.
Molecular biology reports.
2019 Aug; 46(4):4017-4025. doi:
10.1007/s11033-019-04850-3
. [PMID: 31079315] - Timothy H T Cheng, Peiyong Jiang, Jeremy Y C Teoh, Macy M S Heung, Jacqueline C W Tam, Xiao Sun, Wing-Shan Lee, Meng Ni, Ronald C K Chan, Chi-Fai Ng, K C Allen Chan, Rossa W K Chiu, Y M Dennis Lo. Noninvasive Detection of Bladder Cancer by Shallow-Depth Genome-Wide Bisulfite Sequencing of Urinary Cell-Free DNA for Methylation and Copy Number Profiling.
Clinical chemistry.
2019 07; 65(7):927-936. doi:
10.1373/clinchem.2018.301341
. [PMID: 30988170] - Ravinder R Gaddam, Stephen Chambers, Robin Fraser, Victoria C Cogger, David G Le Couteur, Isao Ishii, Madhav Bhatia. Cystathionine-Gamma-Lyase-Derived Hydrogen Sulfide-Regulated Substance P Modulates Liver Sieve Fenestrations in Caecal Ligation and Puncture-Induced Sepsis.
International journal of molecular sciences.
2019 Jun; 20(13):. doi:
10.3390/ijms20133191
. [PMID: 31261857] - Yuyan Sun, Min Fan, Yanjun He. DNA Methylation Analysis of the Citrullus lanatus Response to Cucumber GreenMottle Mosaic Virus Infection by Whole-Genome Bisulfite Sequencing.
Genes.
2019 05; 10(5):. doi:
10.3390/genes10050344
. [PMID: 31067797] - Ralf R Mendel, Thomas W Hercher. Harvesting Moco.
Nature chemical biology.
2019 05; 15(5):429-430. doi:
10.1038/s41589-019-0257-y
. [PMID: 30911176] - Estéfani García-Ríos, Marcos Nuévalos, Eladio Barrio, Sergi Puig, José M Guillamón. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
Environmental microbiology.
2019 05; 21(5):1771-1781. doi:
10.1111/1462-2920.14586
. [PMID: 30859719] - Ji Seong Kim, Andrew HyoungJin Kim, Cholsoon Jang, In Jin Jang, Ki Bong Kim, Joo Youn Cho, Ho Young Hwang. Comparison of the Plasma Metabolome Profiles Between the Internal Thoracic Artery and Ascending Aorta in Patients Undergoing Coronary Artery Bypass Graft Surgery Using Gas Chromatography Time-of-Flight Mass Spectrometry.
Journal of Korean medical science.
2019 Apr; 34(13):e104. doi:
10.3346/jkms.2019.34.e104
. [PMID: 30950250] - Yongpan Shan, Lidong Cao, Chunli Xu, Pengyue Zhao, Chong Cao, Fengmin Li, Bo Xu, Qiliang Huang. Sulfonate-Functionalized Mesoporous Silica Nanoparticles as Carriers for Controlled Herbicide Diquat Dibromide Release through Electrostatic Interaction.
International journal of molecular sciences.
2019 Mar; 20(6):. doi:
10.3390/ijms20061330
. [PMID: 30884792] - Xiang Li, Lu Chen, Qinghua Zhang, Yonghao Sun, Qing Li, Jianbing Yan. BRIF-Seq: Bisulfite-Converted Randomly Integrated Fragments Sequencing at the Single-Cell Level.
Molecular plant.
2019 03; 12(3):438-446. doi:
10.1016/j.molp.2019.01.004
. [PMID: 30639749] - Shiva Zare, Mohammad Hossein Dabbaghmanesh, Ali Noorafshan, Farhad Koohpeyma, Marzieh Bakhshayeshkaram, Nima Montazeri-Najafabady. Protective effect of vitamin E and vitamin C alone and in combination on testicular damage induced by sodium metabisulphite in rats: A stereological study.
Andrologia.
2019 Mar; 51(2):e13193. doi:
10.1111/and.13193
. [PMID: 30478946] - Yannick Vervoort, Rodrigo Sergio Wiederkehr, Michiel Smets, Maarten Fauvart, Tim Stakenborg, Gabrielle Woronoff, Liesbet Lagae, Kevin J Verstrepen. Development and validation of a glass-silicon microdroplet-based system to measure sulfite concentrations in beverages.
Analytical and bioanalytical chemistry.
2019 Feb; 411(6):1127-1134. doi:
10.1007/s00216-018-1516-6
. [PMID: 30637438] - Lia Ooi, Takakazu Matsuura, Shintaro Munemasa, Yoshiyuki Murata, Maki Katsuhara, Takashi Hirayama, Izumi C Mori. The mechanism of SO2 -induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells.
Plant, cell & environment.
2019 02; 42(2):437-447. doi:
10.1111/pce.13406
. [PMID: 30014483] - Tianming Wang, Weifeng Huang, Qiangjun Duan, Jian Wang, Huijuan Cheng, Jing Shao, Fang Li, Daqiang Wu. Sodium houttuyfonate in vitro inhibits biofilm dispersion and expression of bdlA in Pseudomonas aeruginosa.
Molecular biology reports.
2019 Feb; 46(1):471-477. doi:
10.1007/s11033-018-4497-9
. [PMID: 30511304]