Propionate (BioDeep_00000840343)
代谢物信息卡片
化学式: C3H5O2- (73.028953)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 16.67%
分子结构信息
SMILES: CCC(=O)[O-]
InChI: InChI=1S/C3H6O2/c1-2-3(4)5/h2H2,1H3,(H,4,5)/p-1
描述信息
The conjugate base of propionic acid; a key precursor in lipid biosynthesis.
同义名列表
1 个代谢物同义名
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:17272
- PubChem: 104745
- ChEMBL: CHEMBL500826
- MeSH: Propionates
- CAS: 72-03-7
- MetaboLights: MTBLC17272
分类词条
相关代谢途径
Reactome(0)
BioCyc(6)
PlantCyc(0)
代谢反应
220 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(80)
- (S)-propane-1,2-diol degradation:
(S)-propane-1,2-diol ⟶ 1-propanal + H2O
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- pyruvate fermentation to propanoate II (acrylate pathway):
(R)-lactate + propanoyl-CoA ⟶ (R)-lactoyl-CoA + propanoate
- pyruvate fermentation to propanoate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- conversion of succinate to propanoate:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- L-glutamate degradation VIII (to propanoate):
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- 2-methylcitrate cycle II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- 2-methylcitrate cycle I:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- isopropylamine degradation:
1-propanal + H2O + NAD(P)+ ⟶ H+ + NAD(P)H + propanoate
- 2-oxobutanoate degradation II:
H2O + propanoyl-CoA ⟶ H+ + coenzyme A + propanoate
- superpathway of nicotinate degradation:
6-hydroxynicotinate + H+ + NADH + O2 ⟶ 2,5-dihydroxypyridine + CO2 + H2O + NAD+
- L-alanine fermentation to propanoate and acetate:
(R)-lactate + propanoyl-CoA ⟶ (R)-lactoyl-CoA + propanoate
- anaerobic energy metabolism (invertebrates, mitochondrial):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- fermentation to 2-methylbutanoate:
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- superpathway of anaerobic energy metabolism (invertebrates):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- nicotinate degradation III:
6-oxo-1,4,5,6-tetrahydronicotinate + H2O ⟶ (S)-2-formylglutarate + ammonium
- heme d1 biosynthesis:
12,18-didecarboxysiroheme + H2O + SAM ⟶ 5'-deoxyadenosine + H+ + met + pre-heme d1 + propanoate
- L-threonine degradation I:
ATP + propanoate ⟶ ADP + propanoyl phosphate
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of L-threonine metabolism:
NAD+ + thr ⟶ H+ + L-2-amino-3-oxobutanoate + NADH
- L-isoleucine biosynthesis IV:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- 2-methylcitrate cycle I:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of L-threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- L-threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- conversion of succinate to propanoate:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- pyruvate fermentation to propionate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- β-alanine biosynthesis II:
FADH2 + acrylyl-CoA ⟶ FAD + H+ + propanoyl-CoA
- L-threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- β-alanine biosynthesis II:
ala + malonate semialdehyde ⟶ β-alanine + pyruvate
- 2-methylbutyrate biosynthesis:
acetyl-CoA + propionate ⟶ acetate + propanoyl-CoA
- 2-methylcitrate cycle I:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- 2-methylcitrate cycle I:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propionyl-CoA
- 2-methylcitrate cycle I:
(2R,3S)-2-methylisocitrate ⟶ pyruvate + succinate
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propionyl-CoA
- 2-methylcitrate cycle II:
(2R,3S)-2-methylisocitrate ⟶ pyruvate + succinate
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propionyl-CoA
- 2-methylcitrate cycle I:
(2R,3S)-2-methylisocitrate ⟶ pyruvate + succinate
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propanoyl-CoA
- β-alanine biosynthesis II:
ala + malonate semialdehyde ⟶ β-alanine + pyruvate
- pantothenate and coenzyme A biosynthesis II:
3-methyl-2-oxobutanoate + 5,10-methylenetetrahydrofolate + H2O ⟶ 2-dehydropantoate + tetrahydrofolate
- isoleucine biosynthesis IV:
2-oxoglutarate + ile ⟶ (S)-3-methyl-2-oxopentanoate + glt
- L-threonine degradation I:
phosphate + propanoyl-CoA ⟶ coenzyme A + propanoyl phosphate
- conversion of succinate to propanoate:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- pyruvate fermentation to propanoate I:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- pyruvate fermentation to propanoate I:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- 2-methylbutyrate biosynthesis:
acetyl-CoA + propionate ⟶ acetate + propanoyl-CoA
- L-threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- pyruvate fermentation to propanoate I:
(S)-methylmalonyl-CoA + pyruvate ⟶ oxaloacetate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- 2-methylcitrate cycle I:
H2O + oxaloacetate + propanoyl-CoA ⟶ (2S,3S)-2-methylcitrate + H+ + coenzyme A
- 2-methylbutanoate biosynthesis:
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- 2-methylcitrate cycle I:
ATP + coenzyme A + propionate ⟶ AMP + H+ + diphosphate + propanoyl-CoA
- isoleucine biosynthesis IV:
2-oxoglutarate + ile ⟶ 2-keto-3-methyl-valerate + glt
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propanoyl-CoA
- 2-methylcitrate cycle I:
(2R,3S)-2-methylisocitrate ⟶ pyruvate + succinate
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propanoyl-CoA
- 2-methylcitrate cycle I:
(2R,3S)-2-methylisocitrate ⟶ pyruvate + succinate
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- threonine degradation I:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propanoyl-CoA
- pyruvate fermentation to propionate I:
(S)-malate ⟶ H2O + fumarate
- L-1,2-propanediol degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- 2-methylbutyrate biosynthesis:
acetyl-CoA + propionate ⟶ acetate + propanoyl-CoA
- threonine degradation I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- L-threonine degradation I:
phosphate + propanoyl-CoA ⟶ coenzyme A + propanoyl phosphate
- pyruvate fermentation to propionate I:
MQH2 + fumarate ⟶ MQ + succinate
- conversion of succinate to propionate:
(R)-methylmalonyl-CoA + H+ ⟶ CO2 + propanoyl-CoA
- pyruvate fermentation to propionate II (acrylate pathway):
acetyl-CoA + propanoate ⟶ acetate + propanoyl-CoA
- L-1,2-propanediol degradation:
phosphate + propanoyl-CoA ⟶ coenzyme A + propanoyl phosphate
- L-isoleucine biosynthesis IV:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- pyruvate fermentation to propanoate I:
propanoyl-CoA + succinate ⟶ propanoate + succinyl-CoA
- 2-oxobutanoate degradation II:
2-oxobutanoate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster + propanoyl-CoA
- L-isoleucine biosynthesis IV:
2-oxobutanoate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster + propanoyl-CoA
WikiPathways(0)
Plant Reactome(4)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Beta-alanine biosynthesis II:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
INOH(0)
PlantCyc(136)
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
3-oxopropanoate + ala ⟶ β-alanine + pyruvate
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
3-oxopropanoate + ala ⟶ β-alanine + pyruvate
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
3-oxopropanoate + ala ⟶ β-alanine + pyruvate
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
3-oxopropanoate + ala ⟶ β-alanine + pyruvate
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
3-methyl-2-oxobutanoate + H2O + a 5,10-methylenetetrahydrofolate ⟶ 2-dehydropantoate + a tetrahydrofolate
- superpathway of coenzyme A biosynthesis II (plants):
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- β-alanine biosynthesis II:
H+ + an oxidized electron-transfer flavoprotein + propanoyl-CoA ⟶ a reduced electron-transfer flavoprotein + acryloyl-CoA
- superpathway of coenzyme A biosynthesis II (plants):
3-oxopropanoate + ala ⟶ β-alanine + pyruvate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ricco Tindjau, Jian-Yong Chua, Shao-Quan Liu. Co-culturing Propionibacterium freudenreichii and Bifidobacterium animalis subsp. lactis improves short-chain fatty acids and vitamin B12 contents in soy whey.
Food microbiology.
2024 Aug; 121(?):104525. doi:
10.1016/j.fm.2024.104525
. [PMID: 38637087] - Cansu Öztürk, Ömer İrfan Küfrevioğlu. Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources.
Protein expression and purification.
2024 Jul; 219(?):106474. doi:
10.1016/j.pep.2024.106474
. [PMID: 38518927] - Claudia Lowe, Nawaporn Onkokesung, Alina Goldberg, Roland Beffa, Paul Neve, Robert Edwards, David Comont. RNA and protein biomarkers for detecting enhanced metabolic resistance to herbicides mesosulfuron-methyl and fenoxaprop-ethyl in black-grass (Alopecurus myosuroides).
Pest management science.
2024 Jun; 80(6):2539-2551. doi:
10.1002/ps.7960
. [PMID: 38375975] - Rikard Fristedt, Vanessa Ruppert, Tania Trower, Janine Cooney, Rikard Landberg. Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans.
Talanta.
2024 May; 272(?):125743. doi:
10.1016/j.talanta.2024.125743
. [PMID: 38382298] - Michael P Cooreman, Javed Butler, Robert P Giugliano, Faiez Zannad, Lucile Dzen, Philippe Huot-Marchand, Martine Baudin, Daniel R Beard, Jean-Louis Junien, Pierre Broqua, Manal F Abdelmalek, Sven M Francque. The pan-PPAR agonist lanifibranor improves cardiometabolic health in patients with metabolic dysfunction-associated steatohepatitis.
Nature communications.
2024 May; 15(1):3962. doi:
10.1038/s41467-024-47919-9
. [PMID: 38730247] - Li-Chan Yang, Chih-Chiang Wang, Der-Yen Lee, Wen-Chuan Lin, Sheng-Chu Kuo, Shin-Hun Juang, Min-Tsang Hsieh. 4,4-Diallyl curcumin bis(2,2-hydroxymethyl)propanoate ameliorates nonalcoholic steatohepatitis in methionine-choline-deficient diet and Western diet mouse models.
Chemical biology & drug design.
2024 May; 103(5):e14532. doi:
10.1111/cbdd.14532
. [PMID: 38725089] - J W Zwolschen, A P Vos, R M C Ariëns, H A Schols. In vitro batch fermentation of (un)saturated homogalacturonan oligosaccharides.
Carbohydrate polymers.
2024 Apr; 329(?):121789. doi:
10.1016/j.carbpol.2024.121789
. [PMID: 38286556] - Kaylie I Kirkwood-Donelson, Jessie Chappel, Emma Tobin, James N Dodds, David M Reif, Jamie C DeWitt, Erin S Baker. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS).
Chemosphere.
2024 Apr; 354(?):141654. doi:
10.1016/j.chemosphere.2024.141654
. [PMID: 38462188] - Lin-Sheng Zhang, Zhi-Shou Zhang, Yu-Zhu Wu, Botang Guo, Jing Li, Xiao-Qi Huang, Feng-Min Zhang, Min-Yao Li, Ping-Chang Yang, Xue-Bao Zheng. Activation of free fatty acid receptors, FFAR1 and FFAR4, ameliorates ulcerative colitis by promote fatty acid metabolism and mediate macrophage polarization.
International immunopharmacology.
2024 Mar; 130(?):111778. doi:
10.1016/j.intimp.2024.111778
. [PMID: 38432147] - Fereshteh Badini, Abolfazl Bayrami, Mohammad Ali Mirshekar, Samira Shahraki, Hamed Fanaei. Levothyroxine attenuates behavioral impairment and improves oxidative stress and histological alteration 3-nitropropionic acid induced experimental Huntington's disease in rats.
Behavioural brain research.
2024 Mar; 461(?):114864. doi:
10.1016/j.bbr.2024.114864
. [PMID: 38220060] - Pajaree Totakul, Maharach Matra, Sukruthai Sommai, Bounnaxay Viennasay, Metha Wanapat. Combination effects of phytonutrient pellet and lemongrass (Cymbopogon citratus) powder on rumen fermentation efficiency and nutrient degradability using in vitro technique.
Tropical animal health and production.
2024 Mar; 56(2):97. doi:
10.1007/s11250-024-03936-w
. [PMID: 38453787] - Roberto Busi, Danica Goggin, Nicholas McKenna, Candy Taylor, Fabian Runge, Shagheyegh Mehravi, Aimone Porri, Jacqueline Batley, Ken Flower. Distribution, frequency and molecular basis of clethodim and quizalofop resistance in brome grass (Bromus diandrus).
Pest management science.
2024 Mar; 80(3):1523-1532. doi:
10.1002/ps.7886
. [PMID: 37966429] - Feng Zhao, Lu Lin, Yihao Zhao, Jingjing Wu, Junqi Zhu, Tengfei Zhang, Huihua Tan. Developmental toxicity and metabolomics analyses of zebrafish (Danio rerio) embryos exposed to Fenoxaprop-p-ethyl.
Environmental science and pollution research international.
2024 Mar; 31(13):20399-20408. doi:
10.1007/s11356-024-32507-7
. [PMID: 38374504] - Min Liao, Minghao Jiang, Xumiao Wang, Wei Hu, Ning Zhao, Haiqun Cao. The Cys-2088-Arg mutation in the ACCase gene and enhanced metabolism confer cyhalofop-butyl resistance in Chinese sprangletop (Leptochloa chinensis).
Pesticide biochemistry and physiology.
2024 Mar; 200(?):105826. doi:
10.1016/j.pestbp.2024.105826
. [PMID: 38582590] - Wanlan Ren, Zhiru Wang, Hua Guo, Yong Gou, Jiayin Dai, Xuming Zhou, Nan Sheng. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice.
Environmental pollution (Barking, Essex : 1987).
2024 Mar; 344(?):123314. doi:
10.1016/j.envpol.2024.123314
. [PMID: 38218542] - Yu Chen, Zhanbin Li, Yuqian Huang, Wenqi Li, Shaopeng Wei, Zhiqin Ji. Synthesis and herbicidal activities of 2-((3-pyridinyl-2-oxo-2,3-dihydrobenzo[d]thiazol-6-yl)oxy)propionates.
Pest management science.
2024 Jan; ?(?):. doi:
10.1002/ps.7971
. [PMID: 38288581] - Ling Chen, Yueying Wang, Lei Zhu, Yong Min, Yuxi Tian, Yan Gong, Xiaoyan Liu. 3-(Methylthio)Propionic Acid from Bacillus thuringiensis Berliner Exhibits High Nematicidal Activity against the Root Knot Nematode Meloidogyne incognita (Kofoid and White) Chitwood.
International journal of molecular sciences.
2024 Jan; 25(3):. doi:
10.3390/ijms25031708
. [PMID: 38338986] - Feixiang Chen, Xinxin Zhang, Junxiang Wang, Fukai Wang, Jinlong Mao. P-Coumaric Acid: Advances in Pharmacological Research Based on Oxidative Stress.
Current topics in medicinal chemistry.
2024 Jan; ?(?):. doi:
10.2174/0115680266276823231230183519
. [PMID: 38279744] - Jianxin Diao, Huijie Fan, Jia Zhang, Xiuqiong Fu, Rongxin Liao, Peng Zhao, Wei Huang, Shiying Huang, Huajun Liao, Jieying Yu, Dongmei Pan, Ming Wang, Wei Xiao, Xiaomin Wen. Activation of APE1 modulates Nrf2 protected against acute liver injury by inhibit hepatocyte ferroptosis and promote hepatocyte autophagy.
International immunopharmacology.
2024 Jan; 128(?):111529. doi:
10.1016/j.intimp.2024.111529
. [PMID: 38244516] - Wenshan Shi, Zengli Zhang, Xinyu Li, Jingsi Chen, Xiaojun Liang, Jiafu Li. GenX Disturbs the Indicators of Hepatic Lipid Metabolism Even at Environmental Concentration in Drinking Water via PPARα Signaling Pathways.
Chemical research in toxicology.
2024 Jan; 37(1):98-108. doi:
10.1021/acs.chemrestox.3c00342
. [PMID: 38150050] - Jie Zheng, Yu An, Yage Du, Ying Song, Qian Zhao, Yanhui Lu. Effects of short-chain fatty acids on blood glucose and lipid levels in mouse models of diabetes mellitus: A systematic review and network meta-analysis.
Pharmacological research.
2024 Jan; 199(?):107041. doi:
10.1016/j.phrs.2023.107041
. [PMID: 38128856] - L F Martins, S F Cueva, C F A Lage, M Ramin, T Silvestre, J Tricarico, A N Hristov. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro.
Journal of dairy science.
2024 Jan; 107(1):288-300. doi:
10.1016/s0022-0302(23)00819-6
. [PMID: 38353472] - Fan Yin, Jinfang Jiang, Min Liao, Haiqun Cao, Zhaofeng Huang, Ning Zhao. Fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon resistance status in Beckmannia syzigachne from wheat fields across Anhui Province, China.
Pesticide biochemistry and physiology.
2024 Jan; 198(?):105711. doi:
10.1016/j.pestbp.2023.105711
. [PMID: 38225069] - Yiming Ni, Liangyin Cai, Xiaojun Gou, Wenjie Li, Mingmei Zhou, Ying Huang. Therapeutic effect of Sanhua decoction on rats with middle cerebral artery occlusion and the associated changes in gut microbiota and short-chain fatty acids.
PloS one.
2024; 19(2):e0298148. doi:
10.1371/journal.pone.0298148
. [PMID: 38363776] - Yuhao Han, Xinyan Qu, Haoyuan Geng, Lei Wang, Zihan Zhu, Yaqi Zhang, Xiaoqing Cui, Heng Lu, Xiao Wang, Panpan Chen, Quanbo Wang, Chenglong Sun. Isotope-Coded On-Tissue Derivatization for Quantitative Mass Spectrometry Imaging of Short-Chain Fatty Acids in Biological Tissues.
Analytical chemistry.
2023 12; 95(48):17622-17628. doi:
10.1021/acs.analchem.3c03308
. [PMID: 37997359] - Ryuji Ohue-Kitano, Yuki Masujima, Shota Nishikawa, Masayo Iwasa, Yosuke Nishitani, Hideaki Kawakami, Hiroshige Kuwahara, Ikuo Kimura. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid contributes to improved hepatic lipid metabolism via GPR41.
Scientific reports.
2023 12; 13(1):21246. doi:
10.1038/s41598-023-48525-3
. [PMID: 38040866] - Hui Li, Lihan Zhang, Rongshuang Huang, Qian Ren, Fan Guo, Min Shi, Letian Yang, Yang Yu, Liang Ma, Ping Fu. [Sichuan Dark Tea-Based Medicated Dietary Formula Improves Obesity-Induced Renal Lipid Metabolism Disorder in Mice by Remodeling Gut Microbiota and Short-Chain Fatty Acid Metabolism].
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition.
2023 Nov; 54(6):1112-1120. doi:
10.12182/20231160208
. [PMID: 38162058] - Jianquan He, Xiuhua Gong, Bing Hu, Lin Lin, Xiujuan Lin, Wenxiu Gong, Bangzhou Zhang, Man Cao, Yanzhi Xu, Rongmu Xia, Guohua Zheng, Shuijin Wu, Yuying Zhang. Altered Gut Microbiota and Short-chain Fatty Acids in Chinese Children with Constipated Autism Spectrum Disorder.
Scientific reports.
2023 11; 13(1):19103. doi:
10.1038/s41598-023-46566-2
. [PMID: 37925571] - Jiayin Tian, Mingbo Zhang, Yingdai Zhao, Chaoshen Zhang, Xixiang Ying. Two new ester alkaloids from Portulaca oleracea L. and their bioactivities.
Natural product research.
2023 Nov; 37(23):3915-3922. doi:
10.1080/14786419.2022.2161542
. [PMID: 36577017] - Peng Jia, Li-Feng Dong, Yan Tu, Qi-Yu Diao. Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows.
Microbiome.
2023 10; 11(1):229. doi:
10.1186/s40168-023-01654-3
. [PMID: 37858227] - Rasool Haddadi, Shahla Eyvari-Brooshghalan, Sajjad Makhdoomi, Ahmad Fadaiie, Alireza Komaki, Afsoon Daneshvar. Neuroprotective effects of silymarin in 3-nitropropionic acid-induced neurotoxicity in male mice: improving behavioral deficits by attenuating oxidative stress and neuroinflammation.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Oct; ?(?):. doi:
10.1007/s00210-023-02776-z
. [PMID: 37847410] - E Sarmikasoglou, P Sumadong, L F W Roesch, S Halima, K Arriola, Z Yuting, K C C Jeong, D Vyas, C Hikita, T Watanabe, A Faciola. Effects of cashew nut-shell extract and monensin on in vitro ruminal fermentation, methane production, and ruminal bacterial community.
Journal of dairy science.
2023 Sep; ?(?):. doi:
10.3168/jds.2023-23669
. [PMID: 37730175] - Md Rezaul Islam, Maruf Hossain Jony, Gazi Kaifeara Thufa, Shopnil Akash, Puja Sutra Dhar, Md Mominur Rahman, Tahmina Afroz, Muniruddin Ahmed, Hassan A Hemeg, Abdur Rauf, Muthu Thiruvengadam, Baskar Venkidasamy. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease.
Molecular neurobiology.
2023 Sep; ?(?):. doi:
10.1007/s12035-023-03604-4
. [PMID: 37698833] - Yousun Lee, Sujin Lee, Sungjun Kim, Dogyeong Lee, Keehoon Won. Solvent-free enzymatic synthesis and evaluation of vanillyl propionate as an effective and biocompatible preservative.
Bioprocess and biosystems engineering.
2023 Sep; ?(?):. doi:
10.1007/s00449-023-02921-1
. [PMID: 37682355] - Zhengxiao He, Ranran Liu, Mengjie Wang, Qiao Wang, Jumei Zheng, Jiqiang Ding, Jie Wen, Alan G Fahey, Guiping Zhao. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens.
Microbiome.
2023 09; 11(1):198. doi:
10.1186/s40168-023-01627-6
. [PMID: 37653442] - Dan Zhang, Yong-Ping Jian, Yu-Ning Zhang, Yao Li, Li-Ting Gu, Hui-Hui Sun, Ming-Di Liu, Hong-Lan Zhou, Yi-Shu Wang, Zhi-Xiang Xu. Short-chain fatty acids in diseases.
Cell communication and signaling : CCS.
2023 08; 21(1):212. doi:
10.1186/s12964-023-01219-9
. [PMID: 37596634] - Honggang Guo, Xia Shi, Jie Han, Qianhui Ren, Zhangtai Gao, Aihuan Zhang, Haixiang Wang, Yanli Du. VOCs from fungi infected-apples attract and increase the oviposition of yellow peach moth Conogethes punctiferalis.
Pest management science.
2023 Aug; ?(?):. doi:
10.1002/ps.7727
. [PMID: 37591815] - Li Luo, Huafeng Zhang, Weiliang Chen, Ziming Zheng, Zihao He, Haoyu Wang, Kaiping Wang, Yu Zhang. Angelica sinensis polysaccharide ameliorates nonalcoholic fatty liver disease via restoring estrogen-related receptor α expression in liver.
Phytotherapy research : PTR.
2023 Aug; ?(?):. doi:
10.1002/ptr.7982
. [PMID: 37563852] - Solomon Owumi, Uche Arunsi, Moses Otunla, Grace Adebisi, Ahmad Altayyar, Chioma Irozuru. 3-Indolepropionic acid mitigates sub-acute toxicity in the cardiomyocytes of epirubicin-treated female rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Jul; ?(?):. doi:
10.1007/s00210-023-02618-y
. [PMID: 37477660] - Ruchita Khurana, Tassilo Brand, Ilma Tapio, Ali-Reza Bayat. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows.
Journal of dairy science.
2023 Jul; 106(7):4608-4621. doi:
10.3168/jds.2022-22838
. [PMID: 37225588] - Jun Zhang, Jiaqi Shang, Yangyi Hao, Yajing Wang, Zhijun Cao, Hongjian Yang, Wei Wang, Shengli Li. Growth performance, blood metabolites, ruminal fermentation, and bacterial community in preweaning dairy calves fed corn silage-included starter and total mixed ration.
Journal of dairy science.
2023 Jul; 106(7):4545-4558. doi:
10.3168/jds.2022-22476
. [PMID: 37164844] - Xiaoying Liu, Chenxu Wang, Yumeng Wang, Chaohui Wang, Xi Sun, Yufei Zhu, Xiaojun Yang, Lixin Zhang, Yanli Liu. Age-associated changes in the growth development of abdominal fat and their correlations with cecal gut microbiota in broiler chickens.
Poultry science.
2023 Jun; 102(9):102900. doi:
10.1016/j.psj.2023.102900
. [PMID: 37406441] - Shanshan Wang, Wenjiang He, Wenzhi Li, Jin-Rong Zhou, Zhiyun Du. Combination of Lycopene and Curcumin Synergistically Alleviates Testosterone-Propionate-Induced Benign Prostatic Hyperplasia in Sprague Dawley Rats via Modulating Inflammation and Proliferation.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28134900
. [PMID: 37446563] - Jingxian Zhang, Hong Yu, Jian Sun, Yingying Shen, Yingying Ran, Xiuhong Mao, Qing Hu, Shen Ji. Isolation and characterization of a new oxyphenisatin analogue, oxyphenisatin propionate, from a processed plum intended as a weight loss product.
Journal of pharmaceutical and biomedical analysis.
2023 Jun; 230(?):115391. doi:
10.1016/j.jpba.2023.115391
. [PMID: 37059035] - Hannah Peterson, Leon Kircik, April W Armstrong. Individual Article: Clascoterone Cream 1\%: Mechanism of Action, Efficacy, and Safety of a Novel, First-in-Class Topical Antiandrogen Therapy for Acne.
Journal of drugs in dermatology : JDD.
2023 Jun; 22(6):SF350992s7-SF350992s14. doi:
. [PMID: 37276168]
- Yifan Zhang, Zhiqiang Kong, Noel Gregoire, Lin Li, Lin Yang, Mengying Zhao, Nuo Jin, Fengzhong Wang, Bei Fan, Frédéric Francis, Minmin Li. Enantioselective activity and toxicity of chiral acaricide cyflumetofen toward target and non-target organisms.
Chemosphere.
2023 Jun; 325(?):138431. doi:
10.1016/j.chemosphere.2023.138431
. [PMID: 36933840] - Chuanxi Zhu, Yan Tang, Dandan Ren, Weiheng Ren, Yongjun Xue, Aruppillai Suthaparan, Jufen Li, Yiwen Wang, Ling Xu, Pinkuan Zhu. Propionate poses antivirulence activity against Botrytis cinerea via regulating its metabolism, infection cushion development and overall pathogenic factors.
Food chemistry.
2023 Jun; 410(?):135443. doi:
10.1016/j.foodchem.2023.135443
. [PMID: 36680882] - Petar Pujic, Lorena Carro, Pascale Fournier, Jean Armengaud, Guylaine Miotello, Nathalie Dumont, Caroline Bourgeois, Xavier Saupin, Patrick Jame, Gabriela Vuletin Selak, Nicole Alloisio, Philippe Normand. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119162
. [PMID: 37298114] - Thidathip Wongsurawat, Sawannee Sutheeworapong, Piroon Jenjaroenpun, Suvimol Charoensiddhi, Ahmad Nuruddin Khoiri, Supachai Topanurak, Chantira Sutthikornchai, Pornrutsami Jintaridth. Microbiome analysis of thai traditional fermented soybeans reveals short-chain fatty acid-associated bacterial taxa.
Scientific reports.
2023 May; 13(1):7573. doi:
10.1038/s41598-023-34818-0
. [PMID: 37165206] - Xiao-Qin Gao, Jin-di Xu, Shi-Kang Zhou, Yi Zhang, Li Zhang. [Jujubae Fructus alleviates intestinal injury caused by toxic medicinals in Shizao Decoction based on correlation between intestinal flora and host metabolism].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 May; 48(10):2792-2802. doi:
10.19540/j.cnki.cjcmm.20230111.401
. [PMID: 37282939] - Daniel Cuervo-Zanatta, Tauqeerunnisa Syeda, Vicente Sánchez-Valle, Mariangel Irene-Fierro, Pablo Torres-Aguilar, Mónica Adriana Torres-Ramos, Mineko Shibayama-Salas, Angélica Silva-Olivares, Lilia G Noriega, Nimbe Torres, Armando R Tovar, Iván Ruminot, L Felipe Barros, Jaime García-Mena, Claudia Perez-Cruz. Dietary Fiber Modulates the Release of Gut Bacterial Products Preventing Cognitive Decline in an Alzheimer's Mouse Model.
Cellular and molecular neurobiology.
2023 May; 43(4):1595-1618. doi:
10.1007/s10571-022-01268-7
. [PMID: 35953741] - Wang Ma, Xin Li, Feng Zhang, Zi-Yi Zhang, Wen-Qian Yang, Peng-Wei Huang, Yang Gu, Xiao-Man Sun. Enhancing the biomass and docosahexaenoic acid-rich lipid accumulation of Schizochytrium sp. in propionate wastewater.
Biotechnology journal.
2023 May; ?(?):e2300052. doi:
10.1002/biot.202300052
. [PMID: 37128672] - Luciano Brochine, Fernanda Ferreira Dos Santos, Flávia Mallaco Moreira, André Luis do Valle de Zoppa, Paulo Roberto Leme, Luis Orlindo Tedeschi, Sarita Bonagurio Gallo. The Impact of Fetal Programming in Ewe Nutrition with Chromium Propionate or Calcium Salts of Palm Oil on the Meat Quality and Bone of the Progeny.
Biological trace element research.
2023 May; 201(5):2331-2340. doi:
10.1007/s12011-022-03344-x
. [PMID: 35761112] - Isabela Solar, Francieli Barreiro Ribeiro, Marina Gomes Barbosa, Renata Germano Borges de Oliveira Nascimento Freitas, Alfredo Shigueo Hanada, Camila de Oliveira Ramos, Marcella Ramos Sant'Ana, Thamiris Candreva, Bianca de Almeida-Pititto, Andrea Tura, Dennys Esper Cintra, Bruno Geloneze, Sandra Roberta Gouvea Ferreira, Ana Carolina Junqueira Vasques. Short-chain fatty acids are associated with adiposity, energy and glucose homeostasis among different metabolic phenotypes in the Nutritionists' Health Study.
Endocrine.
2023 Apr; ?(?):. doi:
10.1007/s12020-023-03356-0
. [PMID: 37029854] - Liniker N Oliveira, Marina A N Pereira, Cecília D S Oliveira, Cássia C Oliveira, Rayana B Silva, Renata A N Pereira, Trevor J DeVries, Marcos N Pereira. Effect of low dietary concentrations of Acacia mearnsii tannin extract on chewing, ruminal fermentation, digestibility, nitrogen partition, and performance of dairy cows.
Journal of dairy science.
2023 Apr; ?(?):. doi:
10.3168/jds.2022-22521
. [PMID: 37028971] - Ken-Ichi Nakashima, Marina Okamura, Imari Matsumoto, Nanae Kameda, Tomoe Tsuboi, Eiji Yamaguchi, Akichika Itoh, Makoto Inoue. Regulation of adipogenesis through retinoid X receptor and/or peroxisome proliferator-activated receptor by designed lignans based on natural products in 3T3-L1 cells.
Journal of natural medicines.
2023 Mar; 77(2):315-326. doi:
10.1007/s11418-022-01674-7
. [PMID: 36607539] - Jinhang Li, Peng Wei, Juan Qin, Kaiyang Feng, Guangmao Shen, Wei Dou, Youjun Zhang, Peng Cao, Zhiguang Yuchi, Thomas Van Leeuwen, Lin He. Molecular Basis for the Selectivity of the Succinate Dehydrogenase Inhibitor Cyflumetofen between Pest and Predatory Mites.
Journal of agricultural and food chemistry.
2023 Mar; 71(8):3658-3669. doi:
10.1021/acs.jafc.2c06149
. [PMID: 36787109] - Meng-Ya Hu, Wen-Jing Zhang, Yun Liu, Yan-Jun Sun, Wei-Sheng Feng, Hui Chen. [Alkaloids from fruit of Lycium chinense var. potaninii].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Mar; 48(6):1546-1552. doi:
10.19540/j.cnki.cjcmm.20221114.201
. [PMID: 37005842] - M Vega-Cárdenas, F Martínez-Gutierrez, E E Lara-Ramírez, E Reynaga-Hernandez, L Yañez-Estrada, S Ratering, S Schnell, C I Godínez-Hernández, J M Vargas-Morales, D P Portales-Pérez. Agave fructans enhance the effects of fermented milk products on obesity biomarkers: a randomised trial.
Beneficial microbes.
2023 Mar; ?(?):1-12. doi:
10.3920/bm2022.0078
. [PMID: 36856122] - Meiting Cui, Yanli Hong, Jingyu Huang, Kailu Liu, Juan Chen, Yong Tan, Xiaowei Nie. Efficiency of Chinese medicine Bushen Huatan formula for treatment of polycystic ovary syndrome in mice via regulating gut microbiota and PPARγ pathway.
Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences.
2023 Feb; 52(1):33-45. doi:
10.3724/zdxbyxb-2022-0456
. [PMID: 37283116] - Jingling Guo, Pan Wang, Yifan Cui, Xiaosong Hu, Fang Chen, Chen Ma. Protective Effects of Hydroxyphenyl Propionic Acids on Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet.
Nutrients.
2023 Feb; 15(4):. doi:
10.3390/nu15041043
. [PMID: 36839401] - Jen Shpirer, Lilya Livshits, Hadar Kamer, Tamir Alon, Yuri Portnik, Uzi Moallem. The form more than the fatty acid profile of fat supplements influences digestibility but not necessarily the production performance of dairy cows.
Journal of dairy science.
2023 Feb; ?(?):. doi:
10.3168/jds.2022-22190
. [PMID: 36797184] - Chun Niu, Xiao-Li Hu, Zi-Wen Yuan, Ying Xiao, Peng Ji, Yan-Ming Wei, Yong-Li Hua. Pulsatilla decoction improves DSS-induced colitis via modulation of fecal-bacteria-related short-chain fatty acids and intestinal barrier integrity.
Journal of ethnopharmacology.
2023 Jan; 300(?):115741. doi:
10.1016/j.jep.2022.115741
. [PMID: 36162543] - Guoxia Yang, Yi Qin, Yonghong Jia, Xiaohong Xie, Dongbin Li, Baoxin Jiang, Qu Wang, Siyu Feng, Yueyan Wu. Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of Rhododendron fortunei.
BMC plant biology.
2023 Jan; 23(1):8. doi:
10.1186/s12870-022-04016-7
. [PMID: 36600207] - Dalton A Holt, Isabella Corsato Alvarenga, Renan A Donadelli, Charles G Aldrich. Substrate degradation and postbiotic analysis of alternative fiber ingredients fermented using an in vitro canine fecal inoculum model.
Journal of animal science.
2023 Jan; 101(?):. doi:
10.1093/jas/skad078
. [PMID: 36943140] - Sandip Shilwant, Jaspal Singh Hundal, Mandeep Singla, Amlan Kumar Patra. Ruminal fermentation and methane production in vitro, milk production, nutrient utilization, blood profile, and immune responses of lactating goats fed polyphenolic and saponin-rich plant extracts.
Environmental science and pollution research international.
2023 Jan; 30(4):10901-10913. doi:
10.1007/s11356-022-22931-y
. [PMID: 36087183] - N V Kim, V A Zotov, V A Alekseev, S A Sheveleva. [The study of the content of short-chain fatty acids in the intestine of people with lipid metabolism disorders].
Voprosy pitaniia.
2023; 92(2):18-25. doi:
10.33029/0042-8833-2023-92-2-18-25
. [PMID: 37346016] - Ahmed Eid Kholif, Gouda Abdelhaleam Gouda, Tarek Abdelfattah Morsy, Osama Hefiny Matloup, Sobhy Mohamed Sallam, Amlan Kumar Patra. Associative effects between Chlorella vulgaris microalgae and Moringa oleifera leaf silage used at different levels decreased in vitro ruminal greenhouse gas production and altered ruminal fermentation.
Environmental science and pollution research international.
2023 Jan; 30(3):6001-6020. doi:
10.1007/s11356-022-22559-y
. [PMID: 35986854] - Sadaf Azad Raja, Saiqa Andleeb, Aneela Javed, Sana Sabahat, Fahed Parvaiz, Hafsah Mureed, Sohaib Ahmad, Falak Naz. Green synthesised AuNps using Ajuga Bracteosa extract and AuNps-Free supernatant exhibited equivalent antibacterial and anticancerous efficacies.
PloS one.
2023; 18(8):e0282485. doi:
10.1371/journal.pone.0282485
. [PMID: 37549158] - Orsolya Takács, Andrea Nagyné Nedves, Imre Boldizsár, Mária Höhn, Szabolcs Béni, Nóra Gampe. Analysis of 3-nitropropionic acid in Fabaceae plants by HPLC-MS/MS.
Phytochemical analysis : PCA.
2022 Dec; 33(8):1205-1213. doi:
10.1002/pca.3171
. [PMID: 36111358] - Mei Deng, Shuai Zhang, Lihong Dong, Fei Huang, Xuchao Jia, Dongxiao Su, Jianwei Chi, Zafarullah Muhammad, Qin Ma, Dong Zhao, Mingwei Zhang, Ruifen Zhang. Shatianyu (Citrus grandis L. Osbeck) Flavonoids and Dietary Fiber in Combination Are More Effective Than Individually in Alleviating High-Fat-Diet-Induced Hyperlipidemia in Mice by Altering Gut Microbiota.
Journal of agricultural and food chemistry.
2022 Nov; 70(46):14654-14664. doi:
10.1021/acs.jafc.2c03797
. [PMID: 36322531] - Abdulrhman S Shaker, Diaa A Marrez, Mohamed A Ali, Hayam M Fathy. Potential synergistic effect of Alhagi graecorum ethanolic extract with two conventional food preservatives against some foodborne pathogens.
Archives of microbiology.
2022 Nov; 204(11):686. doi:
10.1007/s00203-022-03302-0
. [PMID: 36319767] - Jing Duan, Jingkai Pan, Meichen Sun, Yulin Fang. Comparative multiomics study of the effects of Ellagic acid on the gut environment in young and adult mice.
Food research international (Ottawa, Ont.).
2022 11; 161(?):111819. doi:
10.1016/j.foodres.2022.111819
. [PMID: 36192956] - Kunyang Su, Xue Li, Tianxiang Lu, Yiwen Mou, Na Liu, Mingming Song, Ze Yu. Screening of the heterotrophic microalgae strain for the reclamation of acid producing wastewater.
Chemosphere.
2022 Nov; 307(Pt 3):136047. doi:
10.1016/j.chemosphere.2022.136047
. [PMID: 35977579] - Emre İnak, Yasin Nazım Alpkent, Corinna Saalwaechter, Tuba Albayrak, Arda İnak, Wannes Dermauw, Sven Geibel, Thomas Van Leeuwen. Long-term survey and characterization of cyflumetofen resistance in Tetranychus urticae populations from Turkey.
Pesticide biochemistry and physiology.
2022 Nov; 188(?):105235. doi:
10.1016/j.pestbp.2022.105235
. [PMID: 36464352] - Never Zekeya, Bertha Mamiro, Humphrey Ndossi, Rehema Chande Mallya, Mhuji Kilonzo, Alex Kisingo, Mkumbukwa Mtambo, Jafari Kideghesho, Jaffu Chilongola. Screening and evaluation of cytotoxicity and antiviral effects of secondary metabolites from water extracts of Bersama abyssinica against SARS-CoV-2 Delta.
BMC complementary medicine and therapies.
2022 Oct; 22(1):280. doi:
10.1186/s12906-022-03754-3
. [PMID: 36289484] - Yuzhu Sha, Yue Ren, Shengguo Zhao, Yanyu He, Xinyu Guo, Xiaoning Pu, Wenhao Li, Xiu Liu, Jiqing Wang, Shaobin Li. Response of Ruminal Microbiota-Host Gene Interaction to High-Altitude Environments in Tibetan Sheep.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012430
. [PMID: 36293284] - Dan Chen, Ying-Ying Wang, Sheng-Peng Li, Hui-Min Zhao, Feng-Juan Jiang, Ya-Xian Wu, Ying Tong, Qing-Feng Pang. Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction.
Food & function.
2022 Oct; 13(20):10724-10736. doi:
10.1039/d2fo01481e
. [PMID: 36177734] - Magda A Rogowska-van der Molen, Dmitrii Nagornîi, Silvia Coolen, Rob M de Graaf, Tom Berben, Theo van Alen, Mathilde A C H Janssen, Floris P J T Rutjes, Robert S Jansen, Cornelia U Welte. Insect Gut Isolate Pseudomonas sp. Strain Nvir Degrades the Toxic Plant Metabolite Nitropropionic Acid.
Applied and environmental microbiology.
2022 10; 88(19):e0071922. doi:
10.1128/aem.00719-22
. [PMID: 36154165] - Qianqian Yao, Yanan Gao, Linlin Fan, Jiaqi Wang, Nan Zheng. 2'-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut-Liver-Metabolites Axis.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194186
. [PMID: 36235838] - Tarek A Morsy, Gouda A Gouda, Ahmed E Kholif. In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment.
Environmental science and pollution research international.
2022 Oct; 29(46):69743-69752. doi:
10.1007/s11356-022-20622-2
. [PMID: 35570255] - Mauro Picardo, Carla Cardinali, Michelangelo La Placa, Anita Lewartowska-Białek, Viviana Lora, Giuseppe Micali, Roberta Montisci, Luca Morbelli, Andrea Nova, Aurora Parodi, Adam Reich, Michael Sebastian, Katarzyna Turek-Urasińska, Oliver Weirich, Jacek Zdybski, Christos C Zouboulis. Efficacy and safety of N-acetyl-GED-0507-34-LEVO gel in patients with moderate-to severe facial acne vulgaris: a phase IIb randomized double-blind, vehicle-controlled trial.
The British journal of dermatology.
2022 10; 187(4):507-514. doi:
10.1111/bjd.21663
. [PMID: 35553043] - Mariam G Ahmed, Adham A Al-Sagheer, Samir Z El-Zarkouny, Eman A Elwakeel. Potential of selected plant extracts to control severe subacute ruminal acidosis in vitro as compared with monensin.
BMC veterinary research.
2022 Sep; 18(1):356. doi:
10.1186/s12917-022-03457-4
. [PMID: 36151574] - Rudi Hendra, Mariam N Salib, Tadeusz F Molinski. Spiroisoxazoline Inhibitors of Acetylcholinesterase from Pseudoceratina verrucosa. Quantitative Chiroptical Analysis of Configurational Heterogeneity, and Total Synthesis of (±)-Methyl Purpuroceratate C.
Journal of natural products.
2022 09; 85(9):2207-2216. doi:
10.1021/acs.jnatprod.2c00595
. [PMID: 36095307] - Jyoti Singh, Ajay Veer Singh, Viabhav Kumar Upadhayay, Amir Khan, Ramesh Chandra. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions.
World journal of microbiology & biotechnology.
2022 Sep; 38(12):227. doi:
10.1007/s11274-022-03411-4
. [PMID: 36136176] - Ting Zhang, Shaokai Huang, Jingyi Qiu, Xuangao Wu, Heng Yuan, Sunmin Park. Beneficial Effect of Gastrodia elata Blume and Poria cocos Wolf Administration on Acute UVB Irradiation by Alleviating Inflammation through Promoting the Gut-Skin Axis.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810833
. [PMID: 36142744] - Hyunbum Jeon, Yeo Jin Kim, Su-Kyeong Hwang, Jinsoo Seo, Ji Young Mun. Restoration of Cathepsin D Level via L-Serine Attenuates PPA-Induced Lysosomal Dysfunction in Neuronal Cells.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810613
. [PMID: 36142514] - Yiyou Chen, Juncheng Wang, Lirong Yao, Baochun Li, Xiaole Ma, Erjing Si, Ke Yang, Chengdao Li, Xunwu Shang, Yaxiong Meng, Huajun Wang. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810515
. [PMID: 36142428] - Li Cheng, Fang Wang, Yuanxin Cao, Guihan Cai, Qisheng Wei, Shuyun Shi, Ying Guo. Screening of potent α-glucosidase inhibitory and antioxidant polyphenols in Prunella vulgaris L. by bioreaction-HPLC-quadrupole-time-of-flight-MS/MS and in silico analysis.
Journal of separation science.
2022 Sep; 45(18):3393-3403. doi:
10.1002/jssc.202200374
. [PMID: 35819998] - Wenqian Guo, Zengliang Zhang, Lingru Li, Xue Liang, Yuqi Wu, Xiaolu Wang, Han Ma, Jinjun Cheng, Anqi Zhang, Ping Tang, Chong-Zhi Wang, Jin-Yi Wan, Haiqiang Yao, Chun-Su Yuan. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes.
Pharmacological research.
2022 08; 182(?):106355. doi:
10.1016/j.phrs.2022.106355
. [PMID: 35842183] - Aarti Sharma, Sonalika Bhalla, Sidharth Mehan. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats.
Metabolic brain disease.
2022 08; 37(6):1909-1929. doi:
10.1007/s11011-022-01026-0
. [PMID: 35687217] - Bo Cao, Rui-Yang Zhao, Hang-Hang Li, Xing-Ming Xu, Hao Cui, Huan Deng, Lin Chen, Bo Wei. Oral administration of asparagine and 3-indolepropionic acid prolongs survival time of rats with traumatic colon injury.
Military Medical Research.
2022 07; 9(1):37. doi:
10.1186/s40779-022-00397-w
. [PMID: 35791006] - Yu Xie, Xiaoxiong Zou, Jianbang Han, Zhongfei Zhang, Zhiming Feng, Qian Ouyang, Shiting Hua, Zhizheng Liu, Cong Li, Yingqian Cai, Yuxi Zou, Yanping Tang, Xiaodan Jiang. Indole-3-propionic acid alleviates ischemic brain injury in a mouse middle cerebral artery occlusion model.
Experimental neurology.
2022 07; 353(?):114081. doi:
10.1016/j.expneurol.2022.114081
. [PMID: 35405119] - Dakota R Robarts, Kaitlyn K Venneman, Sumedha Gunewardena, Udayan Apte. GenX induces fibroinflammatory gene expression in primary human hepatocytes.
Toxicology.
2022 07; 477(?):153259. doi:
10.1016/j.tox.2022.153259
. [PMID: 35850385] - Yang Li, Guo-Qiang Qin, Wan-Ying Wang, Xu Liu, Xiao-Qian Gao, Jun-Hui Liu, Tao Zheng, Wei Zhang, Lan Cheng, Kun Yang, Xin You, Yue Wu, Zhong-Ze Fang. Short chain fatty acids for the risk of diabetic nephropathy in type 2 diabetes patients.
Acta diabetologica.
2022 Jul; 59(7):901-909. doi:
10.1007/s00592-022-01870-7
. [PMID: 35368224] - Xue Li, Xiuxia Yuan, Lijuan Pang, Siwei Zhang, Yajun Li, Xufeng Huang, Xiaoduo Fan, Xueqin Song. The effect of serum lipids and short-chain fatty acids on cognitive functioning in drug-naïve, first episode schizophrenia patients.
Psychiatry research.
2022 07; 313(?):114582. doi:
10.1016/j.psychres.2022.114582
. [PMID: 35526421] - Elisabeth Serger, Lucia Luengo-Gutierrez, Jessica S Chadwick, Guiping Kong, Luming Zhou, Greg Crawford, Matt C Danzi, Antonis Myridakis, Alexander Brandis, Adesola Temitope Bello, Franziska Müller, Alexandros Sanchez-Vassopoulos, Francesco De Virgiliis, Phoebe Liddell, Marc Emmanuel Dumas, Jessica Strid, Sridhar Mani, Dylan Dodd, Simone Di Giovanni. The gut metabolite indole-3 propionate promotes nerve regeneration and repair.
Nature.
2022 Jul; 607(7919):585-592. doi:
10.1038/s41586-022-04884-x
. [PMID: 35732737] - Aatrayee Das, Sonia Kundu, Mradu Gupta, Arup Mukherjee. Guar gum propionate-kojic acid films for Escherichia coli biofilm disruption and simultaneous inhibition of planktonic growth.
International journal of biological macromolecules.
2022 Jun; 211(?):57-73. doi:
10.1016/j.ijbiomac.2022.05.052
. [PMID: 35576698] - Heng Fang, Miaoxian Fang, Yirong Wang, Huidan Zhang, Jiaxin Li, Jingchun Chen, Qingrui Wu, Linling He, Jing Xu, Jia Deng, Mengting Liu, Yiyu Deng, Chunbo Chen. Indole-3-Propionic Acid as a Potential Therapeutic Agent for Sepsis-Induced Gut Microbiota Disturbance.
Microbiology spectrum.
2022 06; 10(3):e0012522. doi:
10.1128/spectrum.00125-22
. [PMID: 35658593]