FA 20:4 (BioDeep_00000628738)
代谢物信息卡片
化学式: C20H32O2 (304.24021719999996)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(/C=C(\C)/C[C@@H](C)CC(=C)C/C=C/C=C/CCC(C)C)(=O)O
InChI: InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h2-6,9,12-19H2,1H3,(H,21,22)
描述信息
同义名列表
59 个代谢物同义名
3,7,11,15-tetramethyl-(2E,6E,10E,14E)-hexadecatetraenoic acid; Geranylgeranoic acid; Geranylgeranic acid; FA 20:4; (7Z,10Z,13Z)-eicosa-7,10,13,16-tetraenoic acid; 7Z,10Z,13Z,16Z-eicosatraenoic acid; 20:4n-4; 8-[1]-ladderane octanoic acid; C20-[1]-ladderane fatty acid; 8-[3]-ladderane-octanoic acid; 7,11,14,17-Eicosatetraenoic acid, (7Z,11Z,14Z,17Z); Z,Z,Z,Z-7,11,14,17-Eicosatetraenoic acid; Z,Z,Z,Z-7,11,14,17-Icosatetraenoic acid; Eicosa-7c,11c,14c,17c-tetraenoic acid; 7Z,11Z,14Z,17Z-Eicosatetraenoic acid; 3,5S,15-trimethyl-7-methylene-2E,9E,11E-hexadecatrienoic acid; 16:3(2E,9E,11E)(3Me,5Me[S],7My,15Me); 7R,10,13S-trimethyl-2E,4E,9E,11E-heptadecatetraenoic acid; 17:4(2E,4E,9E,11E)(7Me[R],10Me,13Me[S]); 5Z,13Z,16Z,19Z-eicosatetraenoic acid; 20:4(5Z,13Z,16Z,19Z); C20:4n-1,4,7,15; 8Z,11Z,14Z,17Z-eicosatetraenoic acid; omega-3-Arachidonic acid; Bishomostearidonic acid; C20:4n-3,6,9,12; 5E,8Z,11Z,14Z-Eicosatetraenoic acid; 5(E)-Arachidonic acid; C20:4n-6,9,12,15; 2E,8Z,11Z,14Z-Eicosatetraenoic acid; C20:4n-6,9,12,18; 10,13-Eicosadiynoic acid; 8,11-eicosadiynoic acid; 7,13-Eicosadiynoic acid; 8Z,11Z,14Z,18Z-eicosatetraenoic acid; C20:4n-2,6,9,12; 5Z,11Z,14Z,17Z-eicosatetraenoic acid; Juniperonic acid; C20:4n-3,6,9,15; 5,8,11,14-Eicosatetraenoic acid; 5,11,14,17-Eicosatetraenoic acid; 4Z,8Z,11Z,14Z-eicosatetraenoic acid; C20:4n-6,9,12,16; 4Z,7Z,10Z,13Z-eicosatetraenoic acid; C20:4n-7,10,13,16; 4,7,10,13-Eicosatetraenoic acid; 8, 11, 14, 17-icosatetraenoic acid; 8,11,14,17-eicosatetraenoic acid; 6, 10, 14, 18-icosatetraenoic acid; 6,10,14,18-eicosatetraenoic acid; C20:4n-2,6,10,14; 4, 8, 12, 16-icosatetraenoic acid; 4,8,12,16-eicosatetraenoic acid; C20:4n-4,8,12,16; 8R,10,15R-trimethyl-2E,4E,9E,11E-heptadecatetraenoic acid; 17:4(2E,4E,9E,11E)(8Me[R],10Me,15Me[R]); 3,5R,15-trimethyl-7-methylene-2E,10E,12E-hexadecatrienoic acid; 16:3(2E,10E,12E)(3Me,5Me[R],7My,15Me); 18-methyl-5Z,8Z,11Z,14Z-nonadecatetraenoic acid
数据库引用编号
71 个数据库交叉引用编号
- ChEBI: CHEBI:84971
- ChEBI: CHEBI:71488
- ChEBI: CHEBI:185012
- ChEBI: CHEBI:193191
- ChEBI: CHEBI:82835
- ChEBI: CHEBI:36306
- ChEBI: CHEBI:165472
- ChEBI: CHEBI:188008
- ChEBI: CHEBI:192884
- ChEBI: CHEBI:187938
- ChEBI: CHEBI:187946
- PubChem: 5275521
- PubChem: 137323823
- PubChem: 10380342
- PubChem: 131839758
- PubChem: 52921858
- PubChem: 52921857
- PubChem: 52921839
- PubChem: 11722594
- PubChem: 12083498
- PubChem: 13562721
- PubChem: 9543602
- PubChem: 1899
- PubChem: 9543601
- PubChem: 5312544
- PubChem: 5312543
- PubChem: 5312542
- PubChem: 5312541
- PubChem: 5312540
- PubChem: 5312539
- PubChem: 5312538
- PubChem: 5282842
- PubChem: 5282841
- PubChem: 5282840
- PubChem: 52921794
- PubChem: 52921782
- PubChem: 5312315
- ChEMBL: CHEMBL171326
- ChEMBL: CHEMBL267484
- LipidMAPS: LMPR0104010039
- LipidMAPS: LMFA03000020
- LipidMAPS: LMFA01140084
- LipidMAPS: LMFA01140006
- LipidMAPS: LMFA01031069
- LipidMAPS: LMFA01030906
- LipidMAPS: LMFA01030905
- LipidMAPS: LMFA01030871
- LipidMAPS: LMFA01030818
- LipidMAPS: LMFA01030817
- LipidMAPS: LMFA01030816
- LipidMAPS: LMFA01030689
- LipidMAPS: LMFA01030688
- LipidMAPS: LMFA01030687
- LipidMAPS: LMFA01030395
- LipidMAPS: LMFA01030394
- LipidMAPS: LMFA01030393
- LipidMAPS: LMFA01030392
- LipidMAPS: LMFA01030391
- LipidMAPS: LMFA01030390
- LipidMAPS: LMFA01030389
- LipidMAPS: LMFA01030176
- LipidMAPS: LMFA01030175
- LipidMAPS: LMFA01030173
- LipidMAPS: LMFA01020381
- LipidMAPS: LMFA01020367
- LipidMAPS: LMFA01020222
- CAS: 35750-48-2
- CAS: 83807-40-3
- CAS: 24880-40-8
- CAS: 82073-91-4
- CAS: 854251-31-3
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yoshihiro Shidoji. Induction of Hepatoma Cell Pyroptosis by Endogenous Lipid Geranylgeranoic Acid-A Comparison with Palmitic Acid and Retinoic Acid.
Cells.
2024 May; 13(10):. doi:
10.3390/cells13100809
. [PMID: 38786033] - Yoshihiro Shidoji. Geranylgeranoic acid, a bioactive and endogenous fatty acid in mammals: a review.
Journal of lipid research.
2023 May; ?(?):100396. doi:
10.1016/j.jlr.2023.100396
. [PMID: 37247782] - Yuki Tabata, Yoshihiro Shidoji. Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells.
Journal of lipid research.
2020 05; 61(5):778-789. doi:
10.1194/jlr.ra119000610
. [PMID: 32094232] - Suemi Yabuta, Yoshihiro Shidoji. TLR4-mediated pyroptosis in human hepatoma-derived HuH-7 cells induced by a branched-chain polyunsaturated fatty acid, geranylgeranoic acid.
Bioscience reports.
2020 04; 40(4):. doi:
10.1042/bsr20194118
. [PMID: 32270855] - Yoshihiro Shidoji, Yuki Tabata. Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells.
Journal of lipid research.
2019 03; 60(3):579-593. doi:
10.1194/jlr.m090548
. [PMID: 30622150] - Po-Jung Tsai, Wen-Cheng Huang, Shao-Wei Lin, Sung-Nien Chen, Hung-Jing Shen, Hsiang Chang, Lu-Te Chuang. Juniperonic Acid Incorporation into the Phospholipids of Murine Macrophage Cells Modulates Pro-Inflammatory Mediator Production.
Inflammation.
2018 Aug; 41(4):1200-1214. doi:
10.1007/s10753-018-0767-x
. [PMID: 29589254] - Xuefeng Zhang, Shufen Cao, Guillermo Barila, Martin M Edreira, Kyoungja Hong, Mamta Wankhede, Nyla Naim, Matthias Buck, Daniel L Altschuler. Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase.
The Journal of biological chemistry.
2018 05; 293(20):7659-7673. doi:
10.1074/jbc.ra118.001779
. [PMID: 29618512] - Maria A Noguera-Salvà, Francisca Guardiola-Serrano, M Laura Martin, Amaia Marcilla-Etxenike, Martin O Bergo, Xavier Busquets, Pablo V Escribá. Role of the C-terminal basic amino acids and the lipid anchor of the Gγ2 protein in membrane interactions and cell localization.
Biochimica et biophysica acta. Biomembranes.
2017 Sep; 1859(9 Pt B):1536-1547. doi:
10.1016/j.bbamem.2017.02.012
. [PMID: 28235469] - Eileen Edler, Eric Schulze, Matthias Stein. Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region.
Biochimica et biophysica acta. Biomembranes.
2017 Aug; 1859(8):1335-1349. doi:
10.1016/j.bbamem.2017.04.021
. [PMID: 28455099] - Chieko Iwao, Yoshihiro Shidoji. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells.
PloS one.
2015; 10(7):e0132761. doi:
10.1371/journal.pone.0132761
. [PMID: 26186544] - Haruka Kamiyama, Katsura Kakoki, Sayuri Shigematsu, Mai Izumida, Yuka Yashima, Yuetsu Tanaka, Hideki Hayashi, Toshifumi Matsuyama, Hironori Sato, Naoki Yamamoto, Tetsuro Sano, Yoshihiro Shidoji, Yoshinao Kubo. CXCR4-tropic, but not CCR5-tropic, human immunodeficiency virus infection is inhibited by the lipid raft-associated factors, acyclic retinoid analogs, and cholera toxin B subunit.
AIDS research and human retroviruses.
2013 Feb; 29(2):279-88. doi:
10.1089/aid.2012.0174
. [PMID: 22845664] - Chiharu Sakane, Yoshihiro Shidoji. Reversible upregulation of tropomyosin-related kinase receptor B by geranylgeranoic acid in human neuroblastoma SH-SY5Y cells.
Journal of neuro-oncology.
2011 Sep; 104(3):705-13. doi:
10.1007/s11060-011-0556-y
. [PMID: 21373967] - Sara Ricardo, Ruth Lehmann. An ABC transporter controls export of a Drosophila germ cell attractant.
Science (New York, N.Y.).
2009 Feb; 323(5916):943-6. doi:
10.1126/science.1166239
. [PMID: 19213920] - Rémi Lasserre, Xiao-Jun Guo, Fabien Conchonaud, Yannick Hamon, Omar Hawchar, Anne-Marie Bernard, Saïdi M'Homa Soudja, Pierre-François Lenne, Hervé Rigneault, Daniel Olive, Georges Bismuth, Jacques A Nunès, Bernard Payrastre, Didier Marguet, Hai-Tao He. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation.
Nature chemical biology.
2008 Sep; 4(9):538-47. doi:
10.1038/nchembio.103
. [PMID: 18641634] - Jun-ichi Morishige, Naoki Amano, Kaoru Hirano, Hiroaki Nishio, Tamotsu Tanaka, Kiyoshi Satouchi. Inhibitory effect of juniperonic acid (Delta-5c,11c,14c,17c-20:4, omega-3) on bombesin-induced proliferation of Swiss 3T3 cells.
Biological & pharmaceutical bulletin.
2008 Sep; 31(9):1786-9. doi:
10.1248/bpb.31.1786
. [PMID: 18758077] - Yuichi Kodaira, Takeru Kusumoto, Takeshi Takahashi, Yoshihiro Matsumura, Yukino Miyagi, Kyoko Okamoto, Yoshihiro Shidoji, Hiroshi Sagami. Formation of lipid droplets induced by 2,3-dihydrogeranylgeranoic acid distinct from geranylgeranoic acid.
Acta biochimica Polonica.
2007; 54(4):777-82. doi:
10.18388/abp.2007_3158
. [PMID: 18066407] - Yoshihiro Shidoji, Hiroko Ogawa. Natural occurrence of cancer-preventive geranylgeranoic acid in medicinal herbs.
Journal of lipid research.
2004 Jun; 45(6):1092-103. doi:
10.1194/jlr.m300502-jlr200
. [PMID: 15060084] - Yu An, Ying Shao, Christelle Alory, Jeanne Matteson, Toshiaki Sakisaka, Wei Chen, Richard A Gibbs, Ian A Wilson, William E Balch. Geranylgeranyl switching regulates GDI-Rab GTPase recycling.
Structure (London, England : 1993).
2003 Mar; 11(3):347-57. doi:
10.1016/s0969-2126(03)00034-0
. [PMID: 12623022] - Bettina Haslinger, Martin F Goedde, Karin H Toet, Teake Kooistra. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering.
Kidney international.
2002 Nov; 62(5):1611-9. doi:
10.1046/j.1523-1755.2002.00601.x
. [PMID: 12371961] - Yuichi Kodaira, Kiyotaka Usui, Itaru Kon, Hiroshi Sagami. Formation of (R)-2,3-dihydrogeranylgeranoic acid from geranylgeraniol in rat thymocytes.
Journal of biochemistry.
2002 Aug; 132(2):327-34. doi:
10.1093/oxfordjournals.jbchem.a003227
. [PMID: 12153732] - Yoshihiro Shidoji, Sadaaki Komura, Nobuko Ohishi, Kunio Yagi. Interaction between cytochrome c and oxidized mitochondrial lipids.
Sub-cellular biochemistry.
2002; 36(?):19-37. doi:
10.1007/0-306-47931-1_2
. [PMID: 12037982] - I Ikeda, T Oka, K Koba, M Sugano, M S Lie Ken Jie. 5c,11c,14c-eicosatrienoic acid and 5c,11c,14c,17c-eicosatetraenoic acid of Biota orientalis seed oil affect lipid metabolism in the rat.
Lipids.
1992 Jul; 27(7):500-4. doi:
10.1007/bf02536130
. [PMID: 1453880] - R A Iles, R A Chalmers, A J Hind. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy.
Clinica chimica acta; international journal of clinical chemistry.
1986 Dec; 161(2):173-89. doi:
10.1016/0009-8981(86)90211-1
. [PMID: 3802528] - S J Fliesler, G J Schroepfer. Metabolism of mevalonic acid in cell-free homogenates of bovine retinas. Formation of novel isoprenoid acids.
The Journal of biological chemistry.
1983 Dec; 258(24):15062-70. doi:
. [PMID: 6654904]