Undecaprenol (BioDeep_00000603590)
Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C55H90O (766.699129)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(/CC/C(/C)=C/CC/C(=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CC/C(/C)=C/CO)/C)=C(\C)/C
InChI: InChI=1S/C55H90O/c1-45(2)23-13-24-46(3)25-14-26-47(4)27-15-28-48(5)29-16-30-49(6)31-17-32-50(7)33-18-34-51(8)35-19-36-52(9)37-20-38-53(10)39-21-40-54(11)41-22-42-55(12)43-44-56/h23,25,27,29,31,33,35,37,39,41,43,56H,13-22,24,26,28,30,32,34,36,38,40,42,44H2,1-12H3/b46-25+,47-27+,48-29+,49-31+,50-33+,51-35+,52-37+,53-39+,54-41+,55-43+
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:16591
- PubChem: 5280474
- Metlin: METLIN53848
- LipidMAPS: LMPR03010007
- CAS: 15575-14-1
- CAS: 26296-50-4
- CAS: 50426-50-1
- RefMet: Undecaprenol
- KEGG: C01968
- PubChem: 5069
- KNApSAcK: 16591
- LOTUS: LTS0153595
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
9 个相关的物种来源信息
- 2759 - Eukaryota: LTS0153595
- 3433 - Lauraceae: LTS0153595
- 22042 - Litsea: LTS0153595
- 344083 - Litsea acutivena: 10.1002/JCCS.200700071
- 344083 - Litsea acutivena: LTS0153595
- 3398 - Magnoliopsida: LTS0153595
- 35493 - Streptophyta: LTS0153595
- 58023 - Tracheophyta: LTS0153595
- 33090 - Viridiplantae: LTS0153595
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rachel V K Cochrane, Francesca M Alexander, Coilín Boland, Susan K Fetics, Martin Caffrey, Stephen A Cochrane. From plant to probe: semi-synthesis of labelled undecaprenol analogues allows rapid access to probes for antibiotic targets.
Chemical communications (Cambridge, England).
2020 Aug; 56(61):8603-8606. doi:
10.1039/d0cc03388j
. [PMID: 32618302] - Anna Müller, Hannah Ulm, Katrin Reder-Christ, Hans-Georg Sahl, Tanja Schneider. Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors.
Microbial drug resistance (Larchmont, N.Y.).
2012 Jun; 18(3):261-70. doi:
10.1089/mdr.2011.0242
. [PMID: 22432708] - Hui-Min Wang, Wen-Li Lo, Lee-Yu Huang, Yau-Der Wang, Chung-Yi Chen. Chemical constituents from the leaves of Michelia alba.
Natural product research.
2010 Mar; 24(5):398-406. doi:
10.1080/14786410802394132
. [PMID: 20306361] - Hélène Barreteau, Sophie Magnet, Meriem El Ghachi, Thierry Touzé, Michel Arthur, Dominique Mengin-Lecreulx, Didier Blanot. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2009 Jan; 877(3):213-20. doi:
10.1016/j.jchromb.2008.12.010
. [PMID: 19110475] - Ahmed Bouhss, Amy E Trunkfield, Timothy D H Bugg, Dominique Mengin-Lecreulx. The biosynthesis of peptidoglycan lipid-linked intermediates.
FEMS microbiology reviews.
2008 Mar; 32(2):208-33. doi:
10.1111/j.1574-6976.2007.00089.x
. [PMID: 18081839] - Maciej Lis, Howard K Kuramitsu. The stress-responsive dgk gene from Streptococcus mutans encodes a putative undecaprenol kinase activity.
Infection and immunity.
2003 Apr; 71(4):1938-43. doi:
10.1128/iai.71.4.1938-1943.2003
. [PMID: 12654811] - J A McNew, T Weber, F Parlati, R J Johnston, T J Melia, T H Söllner, J E Rothman. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors.
The Journal of cell biology.
2000 Jul; 150(1):105-17. doi:
10.1083/jcb.150.1.105
. [PMID: 10893260] - T Janas, T Chojnacki, E Swiezewska, T Janas. The effect of undecaprenol on bilayer lipid membranes.
Acta biochimica Polonica.
1994; 41(3):351-8. doi:
10.18388/abp.1994_4725
. [PMID: 7856407] - P A Marino, B C McGrath, M J Osborn. Energy dependence of O-antigen synthesis in Salmonella typhimurium.
Journal of bacteriology.
1991 May; 173(10):3128-33. doi:
10.1128/jb.173.10.3128-3133.1991
. [PMID: 1708761] - E Hartmann, H König. Isolation of lipid activated pseudomurein precursors from Methanobacterium thermoautotrophicum.
Archives of microbiology.
1990; 153(5):444-7. doi:
10.1007/bf00248425
. [PMID: 2339954] - J S de Ropp, F A Troy. 2H NMR investigation of the organization and dynamics of polyisoprenols in membranes.
The Journal of biological chemistry.
1985 Dec; 260(29):15669-74. doi:
10.1016/s0021-9258(17)36310-x
. [PMID: 4066690] - L Masson, B E Holbein. Role of lipid intermediate(s) in the synthesis of serogroup B Neisseria meningitidis capsular polysaccharide.
Journal of bacteriology.
1985 Mar; 161(3):861-7. doi:
10.1128/jb.161.3.861-867.1985
. [PMID: 3918990] - V M Reusch. Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall.
Critical reviews in microbiology.
1984; 11(2):129-55. doi:
10.3109/10408418409105475
. [PMID: 6375974]