3-Oxo-2-(2-entenyl)cyclopentaneoctanoic acid (BioDeep_00000004254)

Main id: BioDeep_00000009588

 

human metabolite


代谢物信息卡片


8-[(1S,2S)-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]octanoic acid

化学式: C18H30O3 (294.21948299999997)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C[C@@H]([C@@H](C1=O)C/C=C\CC)CCCCCCCC(=O)O
InChI: InChI=1S/C18H30O3/c1-2-3-7-11-16-15(13-14-17(16)19)10-8-5-4-6-9-12-18(20)21/h3,7,15-16H,2,4-6,8-14H2,1H3,(H,20,21)/b7-3-/t15-,16-/m0/s1

描述信息

3-oxo-2-(2-entenyl)cyclopentaneoctanoic acid, also known as opc-8:0, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, 3-oxo-2-(2-entenyl)cyclopentaneoctanoic acid is considered to be an octadecanoid lipid molecule. 3-oxo-2-(2-entenyl)cyclopentaneoctanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxo-2-(2-entenyl)cyclopentaneoctanoic acid can be found in common wheat, corn, eggplant, and flaxseed, which makes 3-oxo-2-(2-entenyl)cyclopentaneoctanoic acid a potential biomarker for the consumption of these food products.

同义名列表

7 个代谢物同义名

8-[(1S,2S)-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]octanoic acid; 8-[(1S,2S)-3-oxo-2-[(2Z)-Pent-2-en-1-yl]cyclopentyl]octanoate; (1S,2S)-3-oxo-2-(2Z-pentenyl)-cyclopentaneoctanoic acid; (9S,13S)-10,11-dihydro-12-oxo-15-phytoenoic acid; 3-Oxo-2-(2-entenyl)cyclopentaneoctanoic acid; 3-oxo-2-(2-Entenyl)cyclopentaneoctanoate; OPC-8:0



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

24 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(24)

  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-octa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-butanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-buta-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide
  • jasmonic acid biosynthesis: 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-hexanoyl-CoA + O2 ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-(E-hexa-2-enoyl)-CoA + hydrogen peroxide

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC genomics. 2011 Dec; 12(?):608. doi: 10.1186/1471-2164-12-608. [PMID: 22177423]
  • Anna Kuśnierczyk, Diem H T Tran, Per Winge, Tommy S Jørstad, John C Reese, Joanna Troczyńska, Atle M Bones. Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (Brevicoryne brassicae) attack. BMC genomics. 2011 Aug; 12(?):423. doi: 10.1186/1471-2164-12-423. [PMID: 21854623]
  • Yun-Qing Huang, Jia-Qi Liu, Hanyu Gong, Jing Yang, Yangsheng Li, Yu-Qi Feng. Use of isotope mass probes for metabolic analysis of the jasmonate biosynthetic pathway. The Analyst. 2011 Apr; 136(7):1515-22. doi: 10.1039/c0an00736f. [PMID: 21331428]
  • Wenyan Li, Bing Liu, Lujun Yu, Dongru Feng, Hongbin Wang, Jinfa Wang. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC evolutionary biology. 2009 May; 9(?):90. doi: 10.1186/1471-2148-9-90. [PMID: 19416520]
  • Tomoyuki Tani, Hiroyuki Sobajima, Kazunori Okada, Tetsuya Chujo, Shin-Ichi Arimura, Nobuhiro Tsutsumi, Mikio Nishimura, Hideharu Seto, Hideaki Nojiri, Hisakazu Yamane. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta. 2008 Feb; 227(3):517-26. doi: 10.1007/s00425-007-0635-7. [PMID: 17938955]
  • Lucie Kienow, Katja Schneider, Michael Bartsch, Hans-Peter Stuible, Hua Weng, Otto Miersch, Claus Wasternack, Erich Kombrink. Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. Journal of experimental botany. 2008; 59(2):403-19. doi: 10.1093/jxb/erm325. [PMID: 18267944]
  • Abraham Jk Koo, Gregg A Howe. Role of Peroxisomal beta-Oxidation in the Production of Plant Signaling Compounds. Plant signaling & behavior. 2007 Jan; 2(1):20-2. doi: 10.4161/psb.2.1.3612. [PMID: 19704801]
  • Abraham J K Koo, Hoo Sun Chung, Yuichi Kobayashi, Gregg A Howe. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. The Journal of biological chemistry. 2006 Nov; 281(44):33511-20. doi: 10.1074/jbc.m607854200. [PMID: 16963437]
  • Hideyuki Matsuura, Teruhiko Yoshihara. Metabolism of deuterium-labeled jasmonic acid and OPC 8:0 in the potato plant (Solanum tuberosum L.). Bioscience, biotechnology, and biochemistry. 2003 Sep; 67(9):1903-7. doi: 10.1271/bbb.67.1903. [PMID: 14519974]