10-Formyltetrahydrofolate (BioDeep_00000004199)

 

Secondary id: BioDeep_00001869801

human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds


代谢物信息卡片


(2S)-2-[(4-{N-[(4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl)methyl]formamido}phenyl)formamido]pentanedioic acid

化学式: C20H23N7O7 (473.1658888)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(natural_products) 0.36%

分子结构信息

SMILES: C1C(NC2=C(N1)N=C(NC2=O)N)CN(C=O)C3=CC=C(C=C3)C(=O)NC(CCC(=O)O)C(=O)O
InChI: InChI=1S/C20H23N7O7/c21-20-25-16-15(18(32)26-20)23-11(7-22-16)8-27(9-28)12-3-1-10(2-4-12)17(31)24-13(19(33)34)5-6-14(29)30/h1-4,9,11,13,23H,5-8H2,(H,24,31)(H,29,30)(H,33,34)(H4,21,22,25,26,32)/t11-,13+/m1/s1

描述信息

10-formyltetrahydrofolate, also known as 10-formyl-thf or 10-formyltetrahydropteroylglutamic acid, is a member of the class of compounds known as tetrahydrofolic acids. Tetrahydrofolic acids are heterocyclic compounds based on the 5,6,7,8-tetrahydropteroic acid skeleton conjugated with at least one L-glutamic acid unit. 10-formyltetrahydrofolate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). 10-formyltetrahydrofolate can be found in a number of food items such as agave, black salsify, white cabbage, and lemon, which makes 10-formyltetrahydrofolate a potential biomarker for the consumption of these food products. 10-formyltetrahydrofolate exists in all eukaryotes, ranging from yeast to humans. In humans, 10-formyltetrahydrofolate is involved in several metabolic pathways, some of which include mercaptopurine action pathway, methionine metabolism, purine metabolism, and folate malabsorption, hereditary. 10-formyltetrahydrofolate is also involved in several metabolic disorders, some of which include myoadenylate deaminase deficiency, adenine phosphoribosyltransferase deficiency (APRT), molybdenum cofactor deficiency, and cystathionine beta-synthase deficiency. 10-Formyltetrahydrofolate (10-CHO-THF) is a form of tetrahydrofolate that acts as a donor of formyl groups in anabolism. In these reactions 10-CHO-THF is used as a substrate in formyltransferase reactions. This is important in purine biosynthesis, where 10-CHO-THF is a substrate for phosphoribosylaminoimidazolecarboxamide formyltransferase, as well as in the formylation of the methionyl initiator tRNA (fMet-tRNA), when 10-CHO-THF is a substrate for methionyl-tRNA formyltransferase .
10-Formyltetrahydrofolate (10-CHO-THF) is form of tetrahydrofolate that acts as a donor of formyl groups in anabolism. In particular, 10-CHO-THF is used as a substrate in a number of formyltransferase reactions. It plays an important role in purine biosynthesis, where 10-CHO-THF is a substrate for phosphoribosylaminoimidazolecarboxamide formyltransferase, as well as in the formylation of the methionyl initiator tRNA (fMet-tRNA), when 10-CHO-THF is a substrate for methionyl-tRNA formyltransferase. 10-Formyltetrahydrofolate is a substrate for Trifunctional purine biosynthetic protein adenosine-3, Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), 10-formyltetrahydrofolate dehydrogenase, Folylpolyglutamate synthase (mitochondrial), Bifunctional purine biosynthesis protein PURH and C-1-tetrahydrofolate synthase (cytoplasmic).

同义名列表

24 个代谢物同义名

(2S)-2-[(4-{N-[(4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl)methyl]formamido}phenyl)formamido]pentanedioic acid; (2S)-2-[(4-{N-[(4-hydroxy-2-imino-1,2,5,6,7,8-hexahydropteridin-6-yl)methyl]formamido}phenyl)formamido]pentanedioic acid; N-[p-[N-[(2-Amino-5,6,7,8-tetrahydro-4-hydroxy-6-pteridinyl)methyl]formamido]benzoyl]-L-glutamic acid; N-[p-[N-[(2-Amino-5,6,7,8-tetrahydro-4-hydroxy-6-pteridinyl)methyl]formamido]benzoyl]-glutamic acid; N-[p-[N-[(2-Amino-5,6,7,8-tetrahydro-4-hydroxy-6-pteridinyl)methyl]formamido]benzoyl]-L-glutamate; N-[p-[N-[(2-Amino-5,6,7,8-tetrahydro-4-hydroxy-6-pteridinyl)methyl]formamido]benzoyl]-glutamate; N-(10-formyl-5,6,7,8-tetrahydropteroyl)-L-glutamic acid; 10-Formyltetrahydropteroylglutamic acid; N10-Formyl-5,6,7,8-tetrahydrofolic acid; N10-Formyltetrahydropteroylglutamate; 10-Formyl-(6Rs)-tetrahydrofolic acid; N10-Formyl-5,6,7,8-tetrahydrofolate; 10-Formyltetrahydropteroylglutamate; N10-Formyltetrahydrofolic acid; 10-Formyltetrahydrofolic acid; 10-Formyl-tetrahydrofolate; N10-Formyltetrahydrofolate; 10-Formyltetrahydrofolate; 10-Formyl-H4pteglu1; N10-Formyl-THF; N10-Formyl-H4F; 10-Formyl-THF; 10-FTHF; 10-Formyltetrahydrofolate



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(8)

PlantCyc(0)

代谢反应

438 个相关的代谢反应过程信息。

Reactome(21)

BioCyc(13)

WikiPathways(1)

Plant Reactome(299)

INOH(3)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(101)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Bijesh Puthusseri, Peethambaran Divya, Veeresh Lokesh, Bhagyalakshmi Neelwarne. Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status. Food chemistry. 2013 Jan; 136(2):569-75. doi: 10.1016/j.foodchem.2012.09.005. [PMID: 23122099]
  • K V Lobanov, L Errais Lopes, N V Korol'kova, B V Tyaglov, A V Glazunov, R S Shakulov, A S Mironov. Reconstruction of Purine Metabolism in Bacillus subtilis to Obtain the Strain Producer of AICAR: A New Drug with a Wide Range of Therapeutic Applications. Acta naturae. 2011 Apr; 3(2):79-89. doi: . [PMID: 22649686]
  • Yasue Uchida, Saiko Sugiura, Fujiko Ando, Tsutomu Nakashima, Hiroshi Shimokata. Hearing impairment risk and interaction of folate metabolism related gene polymorphisms in an aging study. BMC medical genetics. 2011 Mar; 12(?):35. doi: 10.1186/1471-2350-12-35. [PMID: 21385350]
  • Nicole Stone, Faith Pangilinan, Anne M Molloy, Barry Shane, John M Scott, Per Magne Ueland, James L Mills, Peader N Kirke, Praveen Sethupathy, Lawrence C Brody. Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes. PloS one. 2011; 6(7):e21851. doi: 10.1371/journal.pone.0021851. [PMID: 21765920]
  • Anne Pribat, Alexandre Noiriel, Alison M Morse, John M Davis, Romain Fouquet, Karen Loizeau, Stéphane Ravanel, Wolfgang Frank, Richard Haas, Ralf Reski, Mohamed Bedair, Lloyd W Sumner, Andrew D Hanson. Nonflowering plants possess a unique folate-dependent phenylalanine hydroxylase that is localized in chloroplasts. The Plant cell. 2010 Oct; 22(10):3410-22. doi: 10.1105/tpc.110.078824. [PMID: 20959559]
  • Natalia I Krupenko, Marianne E Dubard, Kyle C Strickland, Kelly M Moxley, Natalia V Oleinik, Sergey A Krupenko. ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase. The Journal of biological chemistry. 2010 Jul; 285(30):23056-63. doi: 10.1074/jbc.m110.128843. [PMID: 20498374]
  • Fabio Coppedè. One-carbon metabolism and Alzheimer's disease: focus on epigenetics. Current genomics. 2010 Jun; 11(4):246-60. doi: 10.2174/138920210791233090. [PMID: 21119889]
  • Alessio Sillo, Gareth Bloomfield, Alessandra Balest, Alessandra Balbo, Barbara Pergolizzi, Barbara Peracino, Jason Skelton, Alasdair Ivens, Salvatore Bozzaro. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC genomics. 2008 Jun; 9(?):291. doi: 10.1186/1471-2164-9-291. [PMID: 18559084]
  • Veerle De Brouwer, Guo-Fang Zhang, Sergei Storozhenko, Dominique Van Der Straeten, Willy E Lambert. pH stability of individual folates during critical sample preparation steps in prevision of the analysis of plant folates. Phytochemical analysis : PCA. 2007 Nov; 18(6):496-508. doi: 10.1002/pca.1006. [PMID: 17624887]
  • Joseph E Baggott, Gregory S Gorman, Tsunenobu Tamura. 13C enrichment of carbons 2 and 8 of purine by folate-dependent reactions after [13C]formate and [2-13C]glycine dosing in adult humans. Metabolism: clinical and experimental. 2007 May; 56(5):708-15. doi: 10.1016/j.metabol.2006.12.020. [PMID: 17445548]
  • Hyesun Min, Eun-Sun Im, Jung-Sook Seo, Ju Ae Mun, Betty J Burri. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver. Alcoholism, clinical and experimental research. 2005 Dec; 29(12):2188-93. doi: 10.1097/01.alc.0000191756.02856.a8. [PMID: 16385189]
  • Erliana Ginting, Jayashree Arcot. High-performance liquid chromatographic determination of naturally occurring folates during tempe preparation. Journal of agricultural and food chemistry. 2004 Dec; 52(26):7752-8. doi: 10.1021/jf040198x. [PMID: 15612749]
  • Young Seoub Hong, Myeong Jin Lee, Kyeong Hee Kim, Sang Hwa Lee, Yong Hwan Lee, Byoung Gwon Kim, Baekgeun Jeong, Hyeong Ryeol Yoon, Hisahide Nishio, Joon Youn Kim. The C677 mutation in methylene tetrahydrofolate reductase gene: correlation with uric acid and cardiovascular risk factors in elderly Korean men. Journal of Korean medical science. 2004 Apr; 19(2):209-13. doi: 10.3346/jkms.2004.19.2.209. [PMID: 15082892]
  • Natalia V Oleinik, Sergey A Krupenko. Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells induces G1 cell cycle arrest and apoptosis. Molecular cancer research : MCR. 2003 Jun; 1(8):577-88. doi: NULL. [PMID: 12805405]
  • R J Cook. Disruption of histidine catabolism in NEUT2 mice. Archives of biochemistry and biophysics. 2001 Aug; 392(2):226-32. doi: 10.1006/abbi.2001.2461. [PMID: 11488596]
  • J E Baggott, C B Robinson, K E Johnston. Bioactivity of [6R]-5-formyltetrahydrofolate, an unusual isomer, in humans and Enterococcus hirae, and cytochrome c oxidation of 10-formytetrahydrofolate to 10-formyldihydrofolate. The Biochemical journal. 2001 Feb; 354(Pt 1):115-22. doi: 10.1042/0264-6021:3540115. [PMID: 11171086]
  • T Gambichler, A Bader, K Sauermann, P Altmeyer, K Hoffmann. Serum folate levels after UVA exposure: a two-group parallel randomised controlled trial. BMC dermatology. 2001; 1(?):8. doi: 10.1186/1471-5945-1-8. [PMID: 11737876]