Tricaprin (BioDeep_00000405301)

Main id: BioDeep_00000017600

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


2,3-bis(decanoyloxy)propyl decanoate (ACD/Name 4.0)

化学式: C33H62O6 (554.4546152)
中文名称: 三癸精
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCC)OC(=O)CCCCCCCCC
InChI: InChI=1S/C33H62O6/c1-4-7-10-13-16-19-22-25-31(34)37-28-30(39-33(36)27-24-21-18-15-12-9-6-3)29-38-32(35)26-23-20-17-14-11-8-5-2/h30H,4-29H2,1-3H3

描述信息

C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen
Trisdecanoin (Tricaprin; Glyceryl tridecanoate) is an orally available precursor of decanoic acid (DA) and can be hydrolyzed to DA. Trisdecanoin is a major component of medium chain triglyceride (MCT) with antiandrogen and antihyperglycemic properties.Trisdecanoin has a safe use in in foods, agents, cosmetics as an additive.

同义名列表

20 个代谢物同义名

2,3-bis(decanoyloxy)propyl decanoate (ACD/Name 4.0); 2,3-bis(decanoyloxy)propyl decanoic acid; 2,3-Bis(decanoyloxy)propyl decanoate; 2,3-di(decanoyloxy)propyl decanoate; 1,2, 3-propanetriyl-Decanoic acid; 1,2, 3-propanetriyl-Decanoate; Glycerol tridecanoic acid; Glyceryl tridecanoic acid; Capric acid triglyceride; Glyceryl tridecanoate; Glycerol tridecanoate; Tricapric glyceride; Glycerol tricaprate; Glycerol tricaprin; TG(10:0/10:0/10:0); tri-n-Caprin; tri-Decanoin; Tridecanoin; Tricaprin; Trisdecanoin



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Rojeet Shrestha, Ken-Ichi Hirano, Akira Suzuki, Satoshi Yamaguchi, Yusuke Miura, Yi-Fan Chen, Masahiro Mizuta, Hitoshi Chiba, Shu-Ping Hui. Change in Plasma Total, Esterified and Non-esterified Capric Acid Concentrations during a Short-term Oral Administration of Synthetic Tricaprin in Dogs. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2017; 33(11):1297-1303. doi: 10.2116/analsci.33.1297. [PMID: 29129871]
  • Nicolas Gautschi, Christel A S Bergström, Martin Kuentz. Rapid determination of drug solubilization versus supersaturation in natural and digested lipids. International journal of pharmaceutics. 2016 Nov; 513(1-2):164-174. doi: 10.1016/j.ijpharm.2016.09.015. [PMID: 27609663]
  • Fakhar Ud Din, Omer Mustapha, Dong Wuk Kim, Rehmana Rashid, Jong Hyuck Park, Ju Yeon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim, Han-Gon Choi. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2015 Aug; 94(?):64-72. doi: 10.1016/j.ejpb.2015.04.019. [PMID: 25979136]
  • Stephanie Phan, Stefan Salentinig, Adrian Hawley, Ben J Boyd. Immobilised lipase for in vitro lipolysis experiments. Journal of pharmaceutical sciences. 2015 Apr; 104(4):1311-8. doi: 10.1002/jps.24327. [PMID: 25630824]
  • Su-Eon Jin, Chong-Kook Kim. Long-term stable cationic solid lipid nanoparticles for the enhanced intracellular delivery of SMAD3 antisense oligonucleotides in activated murine macrophages. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2012; 15(3):467-82. doi: 10.18433/j3z312. [PMID: 22974792]
  • Doron J Aframian, Boaz Mizrahi, Igal Granot, Abraham J Domb. Evaluation of a mucoadhesive lipid-based bioerodable tablet compared with Biotène mouthwash for dry mouth relief--a pilot study. Quintessence international (Berlin, Germany : 1985). 2010 Mar; 41(3):e36-42. doi: ". [PMID: 20213013]
  • Elisabetta Esposito, Martina Fantin, Matteo Marti, Markus Drechsler, Lydia Paccamiccio, Paolo Mariani, Elisa Sivieri, Francesco Lain, Enea Menegatti, Michele Morari, Rita Cortesi. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharmaceutical research. 2008 Jul; 25(7):1521-30. doi: 10.1007/s11095-007-9514-y. [PMID: 18172580]
  • Sung Hee Choi, Su-Eon Jin, Mi-Kyung Lee, Soo-Jeong Lim, Jeong-Sook Park, Byung-Gyu Kim, Woong Shick Ahn, Chong-Kook Kim. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2008 Mar; 68(3):545-54. doi: 10.1016/j.ejpb.2007.07.011. [PMID: 17881199]
  • Dimitrios G Fatouros, Ditte M Karpf, Flemming S Nielsen, Anette Mullertz. Clinical studies with oral lipid based formulations of poorly soluble compounds. Therapeutics and clinical risk management. 2007 Aug; 3(4):591-604. doi: ". [PMID: 18472981]
  • Tomoko Nii, Fumiyoshi Ishii. Dialkylphosphatidylcholine and egg yolk lecithin for emulsification of various triglycerides. Colloids and surfaces. B, Biointerfaces. 2005 Apr; 41(4):305-11. doi: 10.1016/j.colsurfb.2004.12.017. [PMID: 15748826]
  • Wakako Tsuzuki, Akemi Ue, Akihiko Nagao, Miyuki Endo, Masahiko Abe. Inhibitory effect of lysophosphatidylcholine on pancreatic lipase-mediated hydrolysis in lipid emulsion. Biochimica et biophysica acta. 2004 Aug; 1684(1-3):1-7. doi: 10.1016/j.bbalip.2004.05.002. [PMID: 15450204]
  • Soo-Jeong Lim, Chong-Kook Kim. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. International journal of pharmaceutics. 2002 Aug; 243(1-2):135-46. doi: 10.1016/s0378-5173(02)00269-7. [PMID: 12176302]
  • G J A Wanten, F P Janssen, A H J Naber. Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length. European journal of clinical investigation. 2002 Apr; 32(4):285-9. doi: 10.1046/j.1365-2362.2002.00959.x. [PMID: 11952815]
  • F Kang, J Singh. Effect of additives on the release of a model protein from PLGA microspheres. AAPS PharmSciTech. 2001 Dec; 2(4):30. doi: 10.1208/pt020430. [PMID: 14727867]
  • J F Horowitz, R Mora-Rodriguez, L O Byerley, E F Coyle. Preexercise medium-chain triglyceride ingestion does not alter muscle glycogen use during exercise. Journal of applied physiology (Bethesda, Md. : 1985). 2000 Jan; 88(1):219-25. doi: 10.1152/jappl.2000.88.1.219. [PMID: 10642384]
  • D M Small. Physical behavior of lipase substrates. Methods in enzymology. 1997; 286(?):153-67. doi: 10.1016/s0076-6879(97)86010-7. [PMID: 9309650]
  • H Sato. Plasma ketone levels in neonatal calves fed medium chain triglycerides in milk. The Journal of veterinary medical science. 1994 Aug; 56(4):781-2. doi: 10.1292/jvms.56.781. [PMID: 7999911]
  • K Shirai, J Kobayashi, H Inadera, Y Ohkubo, S Mori, Y Saito, S Yoshida. Type I hyperlipoproteinemia caused by lipoprotein lipase defect in lipid-interface recognition was relieved by administration of medium-chain triglyceride. Metabolism: clinical and experimental. 1992 Nov; 41(11):1161-4. doi: 10.1016/0026-0495(92)90003-s. [PMID: 1435285]
  • R T Mabayo, M Furuse, S I Yang, J Okumura. Medium-chain triacylglycerols enhance release of cholecystokinin in chicks. The Journal of nutrition. 1992 Aug; 122(8):1702-5. doi: 10.1093/jn/122.8.1702. [PMID: 1640264]