TG(10:0/10:0/10:0) (BioDeep_00000017600)
Secondary id: BioDeep_00000405301
human metabolite PANOMIX_OTCML-2023 Endogenous LipidSearch
代谢物信息卡片
化学式: C33H62O6 (554.4546)
中文名称: 甘油三癸酸酯, 三癸精, 三癸酸甘油酯
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 96.09%
分子结构信息
SMILES: C(OC(=O)CCCCCCCCC)[C@]([H])(OC(CCCCCCCCC)=O)COC(CCCCCCCCC)=O
InChI: InChI=1S/C33H62O6/c1-4-7-10-13-16-19-22-25-31(34)37-28-30(39-33(36)27-24-21-18-15-12-9-6-3)29-38-32(35)26-23-20-17-14-11-8-5-2/h30H,4-29H2,1-3H3
描述信息
TG(10:0/10:0/10:0) or tricapric glyceride is a tridecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(10:0/10:0/10:0), in particular, consists of one chain of decanoic acid at the C-1 position, one chain of decanoic acid at the C-2 position and one chain of decanoic acid acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org). TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.
Tricaprin is a triglyceride obtained by formal acylation of the three hydroxy groups of glycerol by capric (decanoic) acid. It is a triglyceride and a decanoate ester.
Tricaprin is a natural product found in Umbellularia californica with data available.
Tricaprin is an orally available precursor of decanoic acid (DA), a 10-carbon fatty acid and major component of medium chain triglyceride oils, with potential antiandrogen and antihyperglycemic properties. Upon oral administration, tricaprin is hydrolyzed to DA, which binds to and partially activates peroxisome proliferator-activated receptor (PPAR)-gamma, as well as PPAR-alpha and PPAR-beta/delta, without inducing adipogenesis. Additionally, tricaprin may improve insulin sensitivity and decrease androgen production.
A triglyceride obtained by formal acylation of the three hydroxy groups of glycerol by capric (decanoic) acid.
C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen
It is used in dietary food products
Trisdecanoin (Tricaprin; Glyceryl tridecanoate) is an orally available precursor of decanoic acid (DA) and can be hydrolyzed to DA. Trisdecanoin is a major component of medium chain triglyceride (MCT) with antiandrogen and antihyperglycemic properties.Trisdecanoin has a safe use in in foods, agents, cosmetics as an additive.
同义名列表
76 个代谢物同义名
3,6,9,12,15,18,21,24,27,30-Decaoxadotriacontan-1-ol,32-(4-(1,1,3,- 3-tetramethylbutyl)phenoxy)-; Tricaprin, European Pharmacopoeia (EP) Reference Standard; 1-Decanoic acid-2-decanoic acid-3-decanoic acid-glycerol; 1,2,3-Tricaprinoylglycerol, 1,2,3-Tridecanoylglycerol; Tricaprin, certified reference material, TraceCERT(R); 2,3-bis(decanoyloxy)propyl decanoate (ACD/Name 4.0); 1-Animal fats-2-animal fats-3-animal fats-glycerol; Decanoic acid, 1,1,1-(1,2,3-propanetriyl) ester; 4-02-00-01047 (Beilstein Handbook Reference); 1,3-bis(decanoyloxy)propan-2-yl decanoate; 2,3-bis(decanoyloxy)propyl decanoic acid; Decanoic acid, 1,2,3-propanetriyl ester; 2,3-Bis(decanoyloxy)propyl decanoate #; Decanoic acid,2,3-propanetriyl ester; 2,3-Bis(decanoyloxy)propyl decanoate; 2,3-di(decanoyloxy)propyl decanoate; Decanoate, 1,2,3-propanetriyl ester; propane-1,2,3-triyl tris(decanoate); propane-1,2,3-triyltris(decanoate); Glyceryl tridecanoate, >=99\\% (GC); 1,2, 3-propanetriyl-Decanoic acid; Propane-1,2,3-triyl tridecanoate; 1,2,3-tridecanoyl-sn-sn-glycerol; 1,2,3-Propanol tridecanoic acid; Tridecanoin;Glycerol tricaprate; Tracylglycerol(10:0/10:0/10:0); 1,2,3-Tridecanoyl-rac-glycerol; 1,2, 3-propanetriyl-Decanoate; 1,2,3-tridecanoyl-sn-glycerol; 1,2,3-Propanol tridecanoate; 1,2,3-tricaprinoyl-glycerol; CAPRIC TRIGLYCERIDE [VANDF]; 1,2,3-Tricaprinoylglycerol; DECANOIC ACID TRIGLYCERIDE; 1,2,3-Tridecanoylglycerol; Glycerin tridecanoic acid; Glycerol tridecanoic acid; Glyceryl tridecanoic acid; Capric acid triglyceride; Glycerol tris(decanoate); Glyceryl tricapric acid; Glycerol tricapric acid; TRIGLYCERIDE DECANOATE; Glyceryl tridecanoate; Tricaprin;Tridecanoin; Glycerin tridecanoate; Glycerol tridecanoate; Caprate triglyceride; TRICAPRINOYLGLYCEROL; Tracylglycerol(30:0); glyceryl tricaprate; Capric triglyceride; Tricapric glyceride; Glycerol tricaprate; Tridecanoylglycerol; TAG(10:0/10:0/10:0); Glycerol tricaprin; TG(10:0/10:0/10:0); TG 10:0/10:0/10:0; tridecanoin C10:0; TRICAPRIN [INCI]; TRICAPRIN [INN]; UNII-O1PB8EU98M; Triacylglycerol; Decanoin, tri-; tri-n-Caprin; Triglyceride; tri-Decanoin; Trisdecanoin; Tridecanoin; O1PB8EU98M; Tricaprin; AI3-36968; TAG(30:0); TG(30:0); Caprin
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:77388
- PubChem: 69310
- HMDB: HMDB0000548
- LipidMAPS: LMGL03012617
- MeSH: tricaprin
- ChemIDplus: 0000621716
- foodb: FDB003134
- chemspider: 62521
- CAS: 621-71-6
- medchemexpress: HY-N6660
- MetaboLights: MTBLC77388
- RefMet: TG 10:0/10:0/10:0
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(1)
- De Novo Triacylglycerol Biosynthesis TG(10:0/10:0/10:0):
DG(10:0/10:0/0:0) + Decanoyl-CoA ⟶ Coenzyme A + TG(10:0/10:0/10:0)[iso]
PharmGKB(0)
3 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 33090 - Plants: -
- 3438 - Umbellularia californica: 10.1007/BF02657546
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Rojeet Shrestha, Ken-Ichi Hirano, Akira Suzuki, Satoshi Yamaguchi, Yusuke Miura, Yi-Fan Chen, Masahiro Mizuta, Hitoshi Chiba, Shu-Ping Hui. Change in Plasma Total, Esterified and Non-esterified Capric Acid Concentrations during a Short-term Oral Administration of Synthetic Tricaprin in Dogs.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2017; 33(11):1297-1303. doi:
10.2116/analsci.33.1297
. [PMID: 29129871] - Nicolas Gautschi, Christel A S Bergström, Martin Kuentz. Rapid determination of drug solubilization versus supersaturation in natural and digested lipids.
International journal of pharmaceutics.
2016 Nov; 513(1-2):164-174. doi:
10.1016/j.ijpharm.2016.09.015
. [PMID: 27609663] - Fakhar Ud Din, Omer Mustapha, Dong Wuk Kim, Rehmana Rashid, Jong Hyuck Park, Ju Yeon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim, Han-Gon Choi. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2015 Aug; 94(?):64-72. doi:
10.1016/j.ejpb.2015.04.019
. [PMID: 25979136] - Stephanie Phan, Stefan Salentinig, Adrian Hawley, Ben J Boyd. Immobilised lipase for in vitro lipolysis experiments.
Journal of pharmaceutical sciences.
2015 Apr; 104(4):1311-8. doi:
10.1002/jps.24327
. [PMID: 25630824] - Su-Eon Jin, Chong-Kook Kim. Long-term stable cationic solid lipid nanoparticles for the enhanced intracellular delivery of SMAD3 antisense oligonucleotides in activated murine macrophages.
Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.
2012; 15(3):467-82. doi:
10.18433/j3z312
. [PMID: 22974792] - Doron J Aframian, Boaz Mizrahi, Igal Granot, Abraham J Domb. Evaluation of a mucoadhesive lipid-based bioerodable tablet compared with Biotène mouthwash for dry mouth relief--a pilot study.
Quintessence international (Berlin, Germany : 1985).
2010 Mar; 41(3):e36-42. doi:
"
. [PMID: 20213013] - Elisabetta Esposito, Martina Fantin, Matteo Marti, Markus Drechsler, Lydia Paccamiccio, Paolo Mariani, Elisa Sivieri, Francesco Lain, Enea Menegatti, Michele Morari, Rita Cortesi. Solid lipid nanoparticles as delivery systems for bromocriptine.
Pharmaceutical research.
2008 Jul; 25(7):1521-30. doi:
10.1007/s11095-007-9514-y
. [PMID: 18172580] - Sung Hee Choi, Su-Eon Jin, Mi-Kyung Lee, Soo-Jeong Lim, Jeong-Sook Park, Byung-Gyu Kim, Woong Shick Ahn, Chong-Kook Kim. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2008 Mar; 68(3):545-54. doi:
10.1016/j.ejpb.2007.07.011
. [PMID: 17881199] - Dimitrios G Fatouros, Ditte M Karpf, Flemming S Nielsen, Anette Mullertz. Clinical studies with oral lipid based formulations of poorly soluble compounds.
Therapeutics and clinical risk management.
2007 Aug; 3(4):591-604. doi:
"
. [PMID: 18472981] - Tomoko Nii, Fumiyoshi Ishii. Dialkylphosphatidylcholine and egg yolk lecithin for emulsification of various triglycerides.
Colloids and surfaces. B, Biointerfaces.
2005 Apr; 41(4):305-11. doi:
10.1016/j.colsurfb.2004.12.017
. [PMID: 15748826] - Wakako Tsuzuki, Akemi Ue, Akihiko Nagao, Miyuki Endo, Masahiko Abe. Inhibitory effect of lysophosphatidylcholine on pancreatic lipase-mediated hydrolysis in lipid emulsion.
Biochimica et biophysica acta.
2004 Aug; 1684(1-3):1-7. doi:
10.1016/j.bbalip.2004.05.002
. [PMID: 15450204] - Soo-Jeong Lim, Chong-Kook Kim. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid.
International journal of pharmaceutics.
2002 Aug; 243(1-2):135-46. doi:
10.1016/s0378-5173(02)00269-7
. [PMID: 12176302] - G J A Wanten, F P Janssen, A H J Naber. Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length.
European journal of clinical investigation.
2002 Apr; 32(4):285-9. doi:
10.1046/j.1365-2362.2002.00959.x
. [PMID: 11952815] - F Kang, J Singh. Effect of additives on the release of a model protein from PLGA microspheres.
AAPS PharmSciTech.
2001 Dec; 2(4):30. doi:
10.1208/pt020430
. [PMID: 14727867] - J F Horowitz, R Mora-Rodriguez, L O Byerley, E F Coyle. Preexercise medium-chain triglyceride ingestion does not alter muscle glycogen use during exercise.
Journal of applied physiology (Bethesda, Md. : 1985).
2000 Jan; 88(1):219-25. doi:
10.1152/jappl.2000.88.1.219
. [PMID: 10642384] - D M Small. Physical behavior of lipase substrates.
Methods in enzymology.
1997; 286(?):153-67. doi:
10.1016/s0076-6879(97)86010-7
. [PMID: 9309650] - H Sato. Plasma ketone levels in neonatal calves fed medium chain triglycerides in milk.
The Journal of veterinary medical science.
1994 Aug; 56(4):781-2. doi:
10.1292/jvms.56.781
. [PMID: 7999911] - K Shirai, J Kobayashi, H Inadera, Y Ohkubo, S Mori, Y Saito, S Yoshida. Type I hyperlipoproteinemia caused by lipoprotein lipase defect in lipid-interface recognition was relieved by administration of medium-chain triglyceride.
Metabolism: clinical and experimental.
1992 Nov; 41(11):1161-4. doi:
10.1016/0026-0495(92)90003-s
. [PMID: 1435285] - R T Mabayo, M Furuse, S I Yang, J Okumura. Medium-chain triacylglycerols enhance release of cholecystokinin in chicks.
The Journal of nutrition.
1992 Aug; 122(8):1702-5. doi:
10.1093/jn/122.8.1702
. [PMID: 1640264]