D-Erythrose (BioDeep_00000400315)
Main id: BioDeep_00000003544
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C4H8O4 (120.0423)
中文名称: D-赤藓糖, D-(?)-赤藓糖
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C(C(C=O)O)O)O
InChI: InChI=1/C4H8O4/c5-2-1-8-4(7)3(2)6/h2-7H,1H2/t2-,3-,4?/m1/s1
描述信息
The D-enantiomer of erythrose.
同义名列表
31 个代谢物同义名
D-Erythrose; D-(-)-Erythrose; UNII-X3EI0WE8Q4; D-Erythrose; X3EI0WE8Q4; D-(-)-Erythrose; (+/-)-Erythrose; (2R,3R)-2,3,4-trihydroxybutanal; 2,3,4-trihydroxybutanal; Butanal, 2,3,4-trihydroxy-, (2R,3R)-; Butanal, 2,3,4-trihydroxy-, (2R,3R)-rel-; Butanal, 2,3,4-trihydroxy-, (R*,R*)-; Butanal,2,3,4-trihydroxy-, (2R,3R)-; D-erythro-tetrose; D-erythro-tetrose;D-erythrose; D-Erythrose - min 50% purity as a 70% aq. solution; D-ERYTHROSE (CA. 70% IN WATER); D-Erythrose (w/v = 10 mg/ml in water); D-Erythrose (w/v = 10 mg/ml); D-ERYTHROSE [MI]; D-threose; DL-Erythrose; erythrose; erythrose, (R-(R*,S*))-isomer; erythrose, (R*,S*)-isomer; erythrose, (S-(R*,S*))-isomer; Erythrose, D-; ERYTHROSE, DL-; L-threose; rel-(2R,3R)-2,3,4-Trihydroxybutanal; threose
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:27904
- PubChem: 94176
- CAS: 210230-59-4
- CAS: 1758-51-6
- CAS: 583-50-6
- MoNA: PT107770
- MetaboLights: MTBLC27904
- KEGG: C01796
- PubChem: 4923
- KNApSAcK: 182523
- MeSH: erythrose
- Wikipedia: Erythrose
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Lisa Schlicker, Doletha M E Szebenyi, Semira R Ortiz, Alexander Heinz, Karsten Hiller, Martha S Field. Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis.
The Journal of biological chemistry.
2019 11; 294(44):16095-16108. doi:
10.1074/jbc.ra119.009049
. [PMID: 31511322] - Alexandra E Rangel, Zhe Chen, Tewoderos M Ayele, Jennifer M Heemstra. In vitro selection of an XNA aptamer capable of small-molecule recognition.
Nucleic acids research.
2018 09; 46(16):8057-8068. doi:
10.1093/nar/gky667
. [PMID: 30085205] - Ling Sum Liu, Hoi Man Leung, Dick Yan Tam, Tsz Wan Lo, Sze Wing Wong, Pik Kwan Lo. α-l-Threose Nucleic Acids as Biocompatible Antisense Oligonucleotides for Suppressing Gene Expression in Living Cells.
ACS applied materials & interfaces.
2018 Mar; 10(11):9736-9743. doi:
10.1021/acsami.8b01180
. [PMID: 29473733] - Hanyang Yu, Su Zhang, John C Chaput. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor.
Nature chemistry.
2012 Jan; 4(3):183-7. doi:
10.1038/nchem.1241
. [PMID: 22354431] - Gertjan J M den Hartog, Agnes W Boots, Aline Adam-Perrot, Fred Brouns, Inge W C M Verkooijen, Antje R Weseler, Guido R M M Haenen, Aalt Bast. Erythritol is a sweet antioxidant.
Nutrition (Burbank, Los Angeles County, Calif.).
2010 Apr; 26(4):449-58. doi:
10.1016/j.nut.2009.05.004
. [PMID: 19632091] - R H Nagaraj, V M Monnier. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
Biochimica et biophysica acta.
1995 Nov; 1253(1):75-84. doi:
10.1016/0167-4838(95)00161-m
. [PMID: 7492603]