Callistephin (BioDeep_00000397427)

   

PANOMIX_OTCML-2023


代谢物信息卡片


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)chromenylium chloride

化学式: C21H21ClO10 (468.0823196)
中文名称: 天竺葵素-3-氯化葡萄糖苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=CC=C1C2=[O+]C3=CC(=CC(=C3C=C2OC4C(C(C(C(O4)CO)O)O)O)O)O)O.[Cl-]
InChI: /m1./s1

描述信息

Pelargonidin 3-O-beta-D-glucoside chloride is a member of the class of anthocyanin chlorides that has pelargonidin 3-O-beta-D-glucoside as the cationic counterpart. It contains a pelargonidin 3-O-beta-D-glucoside.
Callistephin (Pelargonidin 3-O-glucoside) chloride is an anthocyanin that can be found in strawberries and chokeberries[1].
Callistephin (Pelargonidin 3-O-glucoside) chloride is an anthocyanin that can be found in strawberries and chokeberries[1].

同义名列表

31 个代谢物同义名

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)chromenylium chloride; (2S,3R,4S,5S,6R)-2-[5,7-dihydroxy-2-(4-hydroxyphenyl)chromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol;chloride; 1-BENZOPYRYLIUM, 3-(.BETA.-D-GLUCOPYRANOSYLOXY)-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-, CHLORIDE; 1-Benzopyrylium, 3-(beta-D-glucopyranosyloxy)-5,7-dihydroxy-2-(4-hydroxyphenyl)-, chloride; 3-(.BETA.-D-GLUCOPYRANOSYLOXY)-4,5,7-TRIHYDROXYFLAVYLIUM CHLORIDE; 3,4,5,7-TETRAHYDROXYFLAVYLIUM CHLORIDE 3-.BETA.-D-GLUCOPYRANOSIDE; 3-(beta-D-glucopyranosyloxy)-4,5,7-trihydroxyflavylium chloride; 3,4,5,7-TETRAHYDROXYFLAVYLIUM CHLORIDE 3-GLUCOSIDE; pelargonidin 3-O-beta-D-glucoside chloride; PELARGONIDIN 3-O-.BETA.-D-GLUCOPYRANOSIDE; PELARGONIDIN 3-.BETA.-D-GLUCOPYRANOSIDE; Callistephin chloride, >=97.0\\% (HPLC); Callistephin chloride, >=95.0\\% (HPLC); Callistephin (chloride), HPLC Grade; Pelargonidin-3-O-glucoside chloride; PELARGONIDIN-3-GLUCOSIDE CHLORIDE; PELARGONIDIN 3-GLUCOSIDE CHLORIDE; PELARGONIDIN 3-.BETA.-GLUCOSIDE; pelargonidin-3-glucopyranoside; PELARGONIDIN 3-GLUCOSIDE [MI]; PELARGONIDIN 3-MONOGLUCOSIDE; CAHGSEFWVUVGGL-UBNZBFALSA-N; Pelargonidin monoglucoside; Pelargonidin-3-glucoside; pelargonidin 3-glucoside; Callistephin (chloride); Callistephin chloride; UNII-8H1WZY9R6P; callistephin; 8H1WZY9R6P; Pelargonidin-3-O-Glucoside



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jiahong Xie, Xin Hao, Yiqiu Shang, Wei Chen. Improvement of stability and lipophilicity of pelargonidin-3-glucoside by enzymatic acylation with aliphatic dicarboxylic acid. Food chemistry. 2022 Sep; 389(?):133077. doi: 10.1016/j.foodchem.2022.133077. [PMID: 35500410]
  • Chalermpong Saenjum, Thanawat Pattananandecha, Kouichi Nakagawa. Antioxidative and Anti-Inflammatory Phytochemicals and Related Stable Paramagnetic Species in Different Parts of Dragon Fruit. Molecules (Basel, Switzerland). 2021 Jun; 26(12):. doi: 10.3390/molecules26123565. [PMID: 34200974]
  • Mohammad Rezaul Islam Shishir, Naymul Karim, Yang Xu, Jiahong Xie, Wei Chen. Improving the physicochemical stability and functionality of nanoliposome using green polymer for the delivery of pelargonidin-3-O-glucoside. Food chemistry. 2021 Feb; 337(?):127654. doi: 10.1016/j.foodchem.2020.127654. [PMID: 32791428]
  • Hongming Su, Lianghua Xie, Yang Xu, Huihui Ke, Tao Bao, Yuting Li, Wei Chen. Pelargonidin-3-O-glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. Journal of agricultural and food chemistry. 2020 Nov; 68(46):13025-13037. doi: 10.1021/acs.jafc.9b03338. [PMID: 31322351]
  • Qiaozhi Zhang, Elvira Gonzalez de Mejia, Diego Luna-Vital, Tianyi Tao, Subhiksha Chandrasekaran, Laura Chatham, John Juvik, Vijay Singh, Deepak Kumar. Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food chemistry. 2019 Aug; 289(?):739-750. doi: 10.1016/j.foodchem.2019.03.116. [PMID: 30955674]
  • Gianfranco Diretto, Xin Jin, Teresa Capell, Changfu Zhu, Lourdes Gomez-Gomez. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PloS one. 2019; 14(2):e0212062. doi: 10.1371/journal.pone.0212062. [PMID: 30742659]
  • Gabriela López-Angulo, Julio Montes-Avila, Leticia Sánchez-Ximello, Sylvia P Díaz-Camacho, Valentín Miranda-Soto, José A López-Valenzuela, Francisco Delgado-Vargas. Anthocyanins of Pithecellobium dulce (Roxb.) Benth. Fruit Associated with High Antioxidant and α-Glucosidase Inhibitory Activities. Plant foods for human nutrition (Dordrecht, Netherlands). 2018 Dec; 73(4):308-313. doi: 10.1007/s11130-018-0693-y. [PMID: 30238426]
  • Larissa Jeremias Duarte, Vitor Clasen Chaves, Marcus Vinicius Pereira Dos Santos Nascimento, Eunice Calvete, Mingchuan Li, Elisa Ciraolo, Alessandra Ghigo, Emilio Hirsch, Claudia Maria Oliveira Simões, Flávio Henrique Reginatto, Eduardo M Dalmarco. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food chemistry. 2018 May; 247(?):56-65. doi: 10.1016/j.foodchem.2017.12.015. [PMID: 29277228]
  • Yunting Zhang, Leiyu Jiang, Yali Li, Qing Chen, Yuntian Ye, Yong Zhang, Ya Luo, Bo Sun, Xiaorong Wang, Haoru Tang. Effect of Red and Blue Light on Anthocyanin Accumulation and Differential Gene Expression in Strawberry (Fragaria × ananassa). Molecules (Basel, Switzerland). 2018 Apr; 23(4):. doi: 10.3390/molecules23040820. [PMID: 29614032]
  • Anna M Amini, Jeremy P E Spencer, Parveen Yaqoob. Effects of pelargonidin-3-O-glucoside and its metabolites on lipopolysaccharide-stimulated cytokine production by THP-1 monocytes and macrophages. Cytokine. 2018 03; 103(?):29-33. doi: 10.1016/j.cyto.2017.12.031. [PMID: 29324257]
  • Fang Liu, Yuanjun Yang, Jianwei Gao, Changle Ma, Yuping Bi. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. PloS one. 2018; 13(1):e0191406. doi: 10.1371/journal.pone.0191406. [PMID: 29360842]
  • Yang Xu, Dongwen Hu, Yuting Li, Chongde Sun, Wei Chen. An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Jan; 1072(?):211-220. doi: 10.1016/j.jchromb.2017.11.025. [PMID: 29179062]
  • Anna M Amini, Karolin Muzs, Jeremy Pe Spencer, Parveen Yaqoob. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutrition research (New York, N.Y.). 2017 Oct; 46(?):88-95. doi: 10.1016/j.nutres.2017.09.006. [PMID: 29132841]
  • Sally M Yacout, Elizabeth R Gaillard. The Anthocyanins, Oenin and Callistephin, Protect RPE Cells Against Oxidative Stress. Photochemistry and photobiology. 2017 03; 93(2):590-599. doi: 10.1111/php.12683. [PMID: 27935050]
  • Aimee N Winter, Erika K Ross, Sonia Khatter, Keith Miller, Daniel A Linseman. Chemical basis for the disparate neuroprotective effects of the anthocyanins, callistephin and kuromanin, against nitrosative stress. Free radical biology & medicine. 2017 02; 103(?):23-34. doi: 10.1016/j.freeradbiomed.2016.12.012. [PMID: 27986528]
  • Carmela Spagnuolo, Gema Flores, Gian Luigi Russo, Maria Luisa Ruiz Del Castillo. A Phenolic Extract Obtained from Methyl Jasmonate-Treated Strawberries Enhances Apoptosis in a Human Cervical Cancer Cell Line. Nutrition and cancer. 2016 10; 68(7):1140-50. doi: 10.1080/01635581.2016.1208831. [PMID: 27618150]
  • Shu Li, Lin Tang, Hongna Bi. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques. Luminescence : the journal of biological and chemical luminescence. 2016 Mar; 31(2):442-452. doi: 10.1002/bio.2980. [PMID: 26249529]
  • Y X Chu, H R Chen, A Z Wu, R Cai, J S Pan. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida. Genetics and molecular research : GMR. 2015 May; 14(2):5010-21. doi: 10.4238/2015.may.12.4. [PMID: 25966276]
  • Yong Wang, Di Zhang, YiXiang Liu, Dan Wang, Jia Liu, BaoPing Ji. The protective effects of berry-derived anthocyanins against visible light-induced damage in human retinal pigment epithelial cells. Journal of the science of food and agriculture. 2015 Mar; 95(5):936-44. doi: 10.1002/jsfa.6765. [PMID: 24909670]
  • Daniel Granato, Alex Koot, Egon Schnitzler, Saskia M van Ruth. Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics. Journal of food science. 2015 Mar; 80(3):C584-93. doi: 10.1111/1750-3841.12794. [PMID: 25675840]
  • Jim Fang. Bioavailability of anthocyanins. Drug metabolism reviews. 2014 Nov; 46(4):508-20. doi: 10.3109/03602532.2014.978080. [PMID: 25347327]
  • Takashi Ichiyanagi, Yoshiki Kashiwada, Yasuo Shida, Michiko Sekiya, Yoshihiko Hatano, Yoshihisa Takaishi, Yasumasa Ikeshiro. Structural elucidation and biological fate of two glucuronyl metabolites of pelargonidin 3-O-β-D-glucopyranoside in rats. Journal of agricultural and food chemistry. 2013 Jan; 61(3):569-78. doi: 10.1021/jf3032793. [PMID: 23256460]
  • Dorota Bonarska-Kujawa, Hanna Pruchnik, Halina Kleszczyńska. Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cellular & molecular biology letters. 2012 Jun; 17(2):289-308. doi: 10.2478/s11658-012-0010-y. [PMID: 22396139]
  • Indika Edirisinghe, Katarzyna Banaszewski, Jack Cappozzo, Krishnankutty Sandhya, Collin L Ellis, Ravi Tadapaneni, Chulani T Kappagoda, Britt M Burton-Freeman. Strawberry anthocyanin and its association with postprandial inflammation and insulin. The British journal of nutrition. 2011 Sep; 106(6):913-22. doi: 10.1017/s0007114511001176. [PMID: 21736853]
  • Susana Manzano, Gary Williamson. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Molecular nutrition & food research. 2010 Dec; 54(12):1773-80. doi: 10.1002/mnfr.201000019. [PMID: 20564476]
  • Wendy Hollands, Gary M Brett, Jack R Dainty, Birgit Teucher, Paul A Kroon. Urinary excretion of strawberry anthocyanins is dose dependent for physiological oral doses of fresh fruit. Molecular nutrition & food research. 2008 Oct; 52(10):1097-105. doi: 10.1002/mnfr.200700372. [PMID: 18645999]
  • Colleen Carkeet, Beverly A Clevidence, Janet A Novotny. Anthocyanin excretion by humans increases linearly with increasing strawberry dose. The Journal of nutrition. 2008 May; 138(5):897-902. doi: 10.1093/jn/138.5.897. [PMID: 18424598]
  • William Mullen, Christine A Edwards, Mauro Serafini, Alan Crozier. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. Journal of agricultural and food chemistry. 2008 Feb; 56(3):713-9. doi: 10.1021/jf072000p. [PMID: 18211024]
  • Catherine Felgines, Odile Texier, Catherine Besson, Bernard Lyan, Jean-Louis Lamaison, Augustin Scalbert. Strawberry pelargonidin glycosides are excreted in urine as intact glycosides and glucuronidated pelargonidin derivatives in rats. The British journal of nutrition. 2007 Dec; 98(6):1126-31. doi: 10.1017/s0007114507764772. [PMID: 17559698]
  • Øyvind M Andersen, Torgils Fossen, Kjell Torskangerpoll, Arve Fossen, Unni Hauge. Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxypyranopelargonidin. Phytochemistry. 2004 Feb; 65(4):405-10. doi: 10.1016/j.phytochem.2003.10.014. [PMID: 14759532]
  • W Nerdal, A T Pedersen, O M Andersen. Two-dimensional nuclear Overhauser enhancement NMR experiments on pelargonidin-3-glucopyranoside, an anthocyanin of low molecular mass. Acta chemica Scandinavica (Copenhagen, Denmark : 1989). 1992 Sep; 46(9):872-6. doi: 10.3891/acta.chem.scand.46-0872. [PMID: 1449913]