mLG cpd (BioDeep_00000395488)

Main id: BioDeep_00000018222

Secondary id: BioDeep_00000171393, BioDeep_00000398082, BioDeep_00000599272, BioDeep_00000861452

PANOMIX_OTCML-2023 LipidSearch


代谢物信息卡片


9,12-Octadecadienoic acid (9Z,12Z)-, monoester with 1,2,3-propanetriol

化学式: C21H38O4 (354.277)
中文名称: (9Z,12Z)-9,12-十八碳二烯酸 2,3-二羟基丙基酯, 甘油亚油酸酯, 一亚油酸甘油酯C18:2
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 50.31%

分子结构信息

SMILES: CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCC(O)CO
InChI: InChI=1S/C21H38O4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-21(24)25-19-20(23)18-22/h6-7,9-10,20,22-23H,2-5,8,11-19H2,1H3/b7-6-,10-9-

描述信息

1-monolinolein is a 1-monoglyceride that has octadecadienoyl (linoleoyl) as the acyl group. It has a role as a plant metabolite and an antiviral agent. It is functionally related to a linoleic acid.
Glyceryl monolinoleate is a natural product found in Saposhnikovia divaricata, Hyoscyamus niger, and other organisms with data available.
A rac-1-monoacylglycerol that is composed of equal amounts of 1-linoleoyl-sn-glycerol and 3-linoleoyl-sn-glycerol.
1-Linoleoyl Glycerol is a fatty acid glycerol.
1-Linoleoyl Glycerol is a fatty acid glycerol.
1-Linoleoyl Glycerol is a fatty acid glycerol.

同义名列表

56 个代谢物同义名

9,12-Octadecadienoic acid (9Z,12Z)-, monoester with 1,2,3-propanetriol; 9,12-Octadecadienoic acid, (Z,Z)-, monoester with 1,2,3-propanetriol; 9,12-Octadecadienoic acid (9Z,12Z)-, 2,3-dihydroxypropyl ester; (9Z,12Z)-Octadeca-9,12-dienoic acid, monoester with glycerol; (9Z,12Z)-Octadeca-9,12-dienoic acid,monoester with glycerol; 9,12-Octadecadienoic acid (Z,Z)-, 2,3-dihydroxypropyl ester; octadeca-9,12-dienoic acid-(2,3-dihydroxy-propyl ester); rac-2,3-dihydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate; (+-)-2,3-dihydroxypropyl (9Z,12Z)-9,12-octadecadienoate; (+/-)-2,3-DIHYDROXYPROPYL 9(Z),12(Z)-OCTADECADIENOATE; 2,3-Dihydroxypropyl (9Z,12Z)-9,12-octadecadienoate #; (9Z,12Z)-2,3-Dihydroxypropyl octadeca-9,12-dienoate; 2,3-Dihydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate; 1-([cis,cis]-9,12-octadecadienoyl)-rac-glycerol; 2,3-Dihydroxypropyl 9,12-octadecadienoate; 1-Linoleoyl-rac-glycerol, >=97\\%, liquid; 1-(9Z,12Z-octadecadienoyl)-rac-glycerol; 1-O-(9Z,12Z-octadecadienoyl)glycerol; rac-(9Z,12Z)-octadecadienoylglycerol; 1-(9Z,12Z-octadecadienoyl)-glycerol; glyceryl linoleic acid monoester; 2,3-Dihydroxypropyl linoleate; MG(18:2(9Z,12Z)/0:0/0:0)[rac]; 1-monolinoleoyl-rac-glycerol; (+-)-glycerol 1-monolinolate; rac-1-monolinoleoylglycerol; Linoleic acid monoglyceride; Glyceryl monolinoleate [NF]; .alpha.-Glyceryl linoleate; 1-Linoleoyl-rac-glycerol; alpha-Glyceryl linoleate; Glycerol 1-monolinolate; Glyceryl monolinoleate; Glycerin monolinoleate; Glycerol monolinoleate; DL-1-linoleoylglycerol; MG(18:2/0:0/0:0)[rac]; .ALPHA.-MONOLINOLEIN; 1-Linoleoyl Glycerol; glyceryl 1-linoleate; 1-Glyceryl linoleate; (+-)-1-monolinolein; 1-linoleoylglycerol; 1-Linoleylglycerol; Linolein, 1-mono-; Linolein, mono-; 1-Monolinolein; MEGxm0_000079; monolinolein; ACon0_000668; ACon1_001767; Emalsy MU; MG(18:2); MAG 18:2; MG 18:2; mLG cpd



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Amin Sadeghpour, Michael Rappolt, Shravasti Misra, Chandrashekhar V Kulkarni. Bile Salts Caught in the Act: From Emulsification to Nanostructural Reorganization of Lipid Self-Assemblies. Langmuir : the ACS journal of surfaces and colloids. 2018 11; 34(45):13626-13637. doi: 10.1021/acs.langmuir.8b02343. [PMID: 30347980]
  • Samuel Guillot, Fabienne Méducin, Kristina Poljak, Virginie Malard, Alexandra Foucault-Collet, Sébastien Serieye, Chantal Pichon. Nanostructured monolinolein miniemulsions as delivery systems: Role of the internal mesophase on cytotoxicity and cell internalization. International journal of pharmaceutics. 2017 May; 523(1):142-150. doi: 10.1016/j.ijpharm.2017.03.012. [PMID: 28284919]
  • Isabelle Martiel, Nicole Baumann, Jijo J Vallooran, Jotam Bergfreund, Laurent Sagalowicz, Raffaele Mezzenga. Oil and drug control the release rate from lyotropic liquid crystals. Journal of controlled release : official journal of the Controlled Release Society. 2015 Apr; 204(?):78-84. doi: 10.1016/j.jconrel.2015.02.034. [PMID: 25744826]
  • Omoakhe Tisor, Michelle Muzzio, David Lopez, Sunghee Lee. Adaptability of monoglyceride-induced crystallization of K2SO4: effect of various anions and lipid chain splay. Langmuir : the ACS journal of surfaces and colloids. 2015 Feb; 31(7):2112-9. doi: 10.1021/la5049419. [PMID: 25645981]
  • Renata Negrini, Antoni Sánchez-Ferrer, Raffaele Mezzenga. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases. Langmuir : the ACS journal of surfaces and colloids. 2014 Apr; 30(15):4280-8. doi: 10.1021/la5008439. [PMID: 24673189]
  • Jijo J Vallooran, Renata Negrini, Raffaele Mezzenga. Controlling anisotropic drug diffusion in lipid-Fe3O4 nanoparticle hybrid mesophases by magnetic alignment. Langmuir : the ACS journal of surfaces and colloids. 2013 Jan; 29(4):999-1004. doi: 10.1021/la304563r. [PMID: 23302008]
  • Renata Negrini, Raffaele Mezzenga. Diffusion, molecular separation, and drug delivery from lipid mesophases with tunable water channels. Langmuir : the ACS journal of surfaces and colloids. 2012 Nov; 28(47):16455-62. doi: 10.1021/la303833s. [PMID: 23116138]
  • Samuel Guillot, Stefan Salentinig, Angela Chemelli, Laurent Sagalowicz, Martin E Leser, Otto Glatter. Influence of the stabilizer concentration on the internal liquid crystalline order and the size of oil-loaded monolinolein-based dispersions. Langmuir : the ACS journal of surfaces and colloids. 2010 May; 26(9):6222-9. doi: 10.1021/la903927w. [PMID: 20143786]
  • Tzong-Huei Lee, Mei-Jhen Wang, Pi-Yu Chen, Tung-Ying Wu, Wu-Che Wen, Fu-Yu Tsai, Ching-Kuo Lee. Constituents of Polyalthia longifolia var. pendula. Journal of natural products. 2009 Nov; 72(11):1960-3. doi: 10.1021/np900207z. [PMID: 19860383]
  • Nag Jin Choi, Hui Gyu Park, Young Jun Kim, In Hwan Kim, Hye Soon Kang, Chil Suk Yoon, Ho Geun Yoon, Su-Il Park, Jae Woo Lee, Soo Hyun Chung. Utilization of monolinolein as a substrate for conjugated linoleic acid production by Bifidobacterium breve LMC 520 of human neonatal origin. Journal of agricultural and food chemistry. 2008 Nov; 56(22):10908-12. doi: 10.1021/jf801597t. [PMID: 18973338]
  • Anan Yaghmur, Liliana de Campo, Laurent Sagalowicz, Martin E Leser, Otto Glatter. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir : the ACS journal of surfaces and colloids. 2006 Nov; 22(24):9919-27. doi: 10.1021/la061303v. [PMID: 17106981]
  • Woo Song Lee, Mi Jeong Kim, Young-Il Beck, Yong-Dae Park, Tae-Sook Jeong. Lp-PLA2 inhibitory activities of fatty acid glycerols isolated from Saururus chinensis roots. Bioorganic & medicinal chemistry letters. 2005 Aug; 15(15):3573-5. doi: 10.1016/j.bmcl.2005.05.056. [PMID: 15961310]
  • J C Markham, J A Gowen, T A Cross, D D Busath. Comparison of gramicidin A and gramicidin M channel conductance dispersities. Biochimica et biophysica acta. 2001 Aug; 1513(2):185-92. doi: 10.1016/s0005-2736(01)00353-4. [PMID: 11470090]