Acibenzolar (BioDeep_00000395162)
代谢物信息卡片
化学式: C7H4N2OS2 (195.97650539999998)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 51.76%
分子结构信息
SMILES: C1=CC(=C2C(=C1)N=NS2)C(=O)S
InChI: InChI=1S/C7H4N2OS2/c10-7(11)4-2-1-3-5-6(4)12-9-8-5/h1-3H,(H,10,11)
数据库引用编号
5 个数据库交叉引用编号
- ChEBI: CHEBI:73185
- PubChem: 10171321
- MetaCyc: CPD-19221
- CAS: 126448-41-7
- PMhub: MS000251183
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
113 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(113)
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + acibenzolar-S-methyl ⟶ MeOH + acibenzolar
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- methylsalicylate degradation:
H2O + methylsalicylate ⟶ H+ + MeOH + salicylate
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
- sulfur volatiles biosynthesis:
SAM + a thiol ⟶ H+ + SAH + a methyl thioether
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Janick Mathys, Kaat De Cremer, Pieter Timmermans, Stefan Van Kerckhove, Bart Lievens, Mieke Vanhaecke, Bruno P A Cammue, Barbara De Coninck. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection.
Frontiers in plant science.
2012; 3(?):108. doi:
10.3389/fpls.2012.00108
. [PMID: 22661981] - Guan-Feng Wang, Savanna Seabolt, Safae Hamdoun, Gina Ng, Jin Park, Hua Lu. Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis.
Plant physiology.
2011 Jul; 156(3):1508-19. doi:
10.1104/pp.111.176776
. [PMID: 21543726] - Qing-Ming Gao, Srivathsa Venugopal, Duroy Navarre, Aardra Kachroo. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins.
Plant physiology.
2011 Jan; 155(1):464-76. doi:
10.1104/pp.110.166876
. [PMID: 21030507] - Ye Xia, Keshun Yu, Duroy Navarre, Kenneth Seebold, Aardra Kachroo, Pradeep Kachroo. The glabra1 mutation affects cuticle formation and plant responses to microbes.
Plant physiology.
2010 Oct; 154(2):833-46. doi:
10.1104/pp.110.161646
. [PMID: 20699396] - Diwaker Tripathi, Yu-Lin Jiang, Dhirendra Kumar. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.
FEBS letters.
2010 Aug; 584(15):3458-63. doi:
10.1016/j.febslet.2010.06.046
. [PMID: 20621100] - Kazuya Ishikawa, Kazuya Yoshimura, Kazuo Harada, Eiichiro Fukusaki, Takahisa Ogawa, Masahiro Tamoi, Shigeru Shigeoka. AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling.
Plant physiology.
2010 Apr; 152(4):2000-12. doi:
10.1104/pp.110.153569
. [PMID: 20181750] - Dieter Treutter. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.
International journal of molecular sciences.
2010 Mar; 11(3):807-57. doi:
10.3390/ijms11030807
. [PMID: 20479987] - Ante Jerkovic, Alison M Kriegel, John R Bradner, Brian J Atwell, Thomas H Roberts, Robert D Willows. Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm.
Plant physiology.
2010 Mar; 152(3):1459-70. doi:
10.1104/pp.109.149864
. [PMID: 20061449] - Srivathsa C Venugopal, Rae-Dong Jeong, Mihir K Mandal, Shifeng Zhu, A C Chandra-Shekara, Ye Xia, Matthew Hersh, Arnold J Stromberg, DuRoy Navarre, Aardra Kachroo, Pradeep Kachroo. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.
PLoS genetics.
2009 Jul; 5(7):e1000545. doi:
10.1371/journal.pgen.1000545
. [PMID: 19578402] - Ajith Anand, Srinivasa Rao Uppalapati, Choong-Min Ryu, Stacy N Allen, Li Kang, Yuhong Tang, Kirankumar S Mysore. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.
Plant physiology.
2008 Feb; 146(2):703-15. doi:
10.1104/pp.107.111302
. [PMID: 18156296] - B Chinnasri, B S Sipes, D P Schmitt. Effects of Inducers of Systemic Acquired Resistance on Reproduction of Meloidogyne javanica and Rotylenchulus reniformis in Pineapple.
Journal of nematology.
2006 Sep; 38(3):319-25. doi:
"
. [PMID: 19259535] - A C Chandra-Shekara, DuRoy Navarre, Aardra Kachroo, Hong-Gu Kang, Daniel Klessig, Pradeep Kachroo. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis.
The Plant journal : for cell and molecular biology.
2004 Dec; 40(5):647-59. doi:
10.1111/j.1365-313x.2004.02241.x
. [PMID: 15546349] - B Chinnasri, B S Sipes, D P Schmitt. Effects of Acibenzolar-S-Methyl Application to Rotylenchulus reniformis and Meloidogyne javanica.
Journal of nematology.
2003 Mar; 35(1):110-4. doi:
"
. [PMID: 19265983] - Kris Audenaert, Geert B De Meyer, Monica M Höfte. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
Plant physiology.
2002 Feb; 128(2):491-501. doi:
10.1104/pp.010605
. [PMID: 11842153]