Faropenem (BioDeep_00000036544)

   

human metabolite


代谢物信息卡片


(+)-(5R,6S)-6-((1R)-1-Hydroxyethyl)-7-oxo-3-((2R)-tetrahydro-2-furyl)-4-thia-1-azabicyclo(3.2.0)hept-2-ene-2-carboxylic acid

化学式: C12H15NO5S (285.06709)
中文名称: 法罗培南钠
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C1C2N(C1=O)C(=C(S2)C3CCCO3)C(=O)O)O
InChI: InChI=1S/C12H15NO5S/c1-5(14)7-10(15)13-8(12(16)17)9(19-11(7)13)6-3-2-4-18-6/h5-7,11,14H,2-4H2,1H3,(H,16,17)/t5-,6-,7+,11-/m1/s1

描述信息

Faropenem is an orally active beta-lactam antibiotic belonging to the penem group. It is resistant to some forms of extended-spectrum beta-lactamase. It is available for oral use. Faropenem was developed by Daiichi Asubio Pharma, which markets it in two forms.

The sodium salt faropenem sodium, available under the trade name Farom, has been marketed in Japan since 1997. (CID 636379 from PubChem)
The prodrug form faropenem medoxomil (also known as faropenem daloxate) has been licensed from Daiichi Asubio Pharma by Replidyne, which plans to market it in conjunction with Forest Pharmaceuticals. The trade name proposed for the product was Orapem, but company officials recently announced this name was rejected by the FDA.

同义名列表

18 个代谢物同义名

(+)-(5R,6S)-6-((1R)-1-Hydroxyethyl)-7-oxo-3-((2R)-tetrahydro-2-furyl)-4-thia-1-azabicyclo(3.2.0)hept-2-ene-2-carboxylic acid; (5R,6S)-6-[(1R)-1-Hydroxyethyl]-7-oxo-3-[(2R)-tetrahydrofuran-2-yl]-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid; (+)-(5R,6S)-6-((1R)-1-Hydroxyethyl)-7-oxo-3-((2R)-tetrahydro-2-furyl)-4-thia-1-azabicyclo(3.2.0)hept-2-ene-2-carboxylate; (5R,6S)-6-[(1R)-1-Hydroxyethyl]-7-oxo-3-[(2R)-tetrahydrofuran-2-yl]-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate; (5R,6S)-6-[(1R)-1-hydroxyethyl]-7-oxo-3-[(2R)-oxolan-2-yl]-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid; (5R,6S)-6-(R)-1-Hydroxyethyl-7-oxo-3-(R)-2-tetrahydrofuryl-4-thia-1-azabicyclo(3.2.0)hept-2-ene-2-carboxylate; 6alpha-[(1R)-1-Hydroxyethyl]-2-[(2R)-tetrahydrofuran-2-yl]-2,3-didehydropenam-3-carboxylic acid; 6a-[(R)-1-Hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylic acid; 6Α-[(R)-1-hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylic acid; 6alpha-[(R)-1-Hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylate; 6Α-[(R)-1-hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylate; 6a-[(R)-1-Hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylate; Faropenem sodium hemipentahydrate; Faropenem sodium hydrate; Faropenem sodium; Fropenum sodium; Faropenem; Fropenem



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xiaoqing Xing, Pengcheng Ma, Qing Huang, Xiemin Qi, Bingjie Zou, Jun Wei, Lei Tao, Lingjun Li, Guohua Zhou, Qinxin Song. Predicting Pharmacokinetics Variation of Faropenem Using a Pharmacometabonomic Approach. Journal of proteome research. 2020 01; 19(1):119-128. doi: 10.1021/acs.jproteome.9b00436. [PMID: 31617722]
  • Meera Gurumurthy, Rupangi Verma, Claire M Naftalin, Kim Hor Hee, Qingshu Lu, Kin Hup Tan, Simi Issac, Wenwei Lin, Angelia Tan, Kok-Yong Seng, Lawrence Soon-U Lee, Nicholas I Paton. Activity of faropenem with and without rifampicin against Mycobacterium tuberculosis: evaluation in a whole-blood bactericidal activity trial. The Journal of antimicrobial chemotherapy. 2017 07; 72(7):2012-2019. doi: 10.1093/jac/dkx081. [PMID: 28333342]
  • Gohki Hasegawa, Shuichi Tsuruoka, Kentaro Ushijima, Akimitsu Maeda, Tokie Hayasaka, Tetsuo Saito, Kazuhiro Harada, Akio Fujimura. Dialyzability of Faropenem in Infected Patients on Chronic Hemodialysis. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2017 Feb; 21(1):52-56. doi: 10.1111/1744-9987.12457. [PMID: 27629941]
  • Dean G Brown, Tricia L May-Dracka, Moriah M Gagnon, Ruben Tommasi. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. Journal of medicinal chemistry. 2014 Dec; 57(23):10144-61. doi: 10.1021/jm501552x. [PMID: 25402200]
  • Aaron M Teitelbaum, Anja Meissner, Ryan A Harding, Christopher A Wong, Courtney C Aldrich, Rory P Remmel. Synthesis, pH-dependent, and plasma stability of meropenem prodrugs for potential use against drug-resistant tuberculosis. Bioorganic & medicinal chemistry. 2013 Sep; 21(17):5605-17. doi: 10.1016/j.bmc.2013.05.024. [PMID: 23845282]
  • Aurijit Sarkar, Kelcey C Anderson, Glen E Kellogg. Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics. European journal of medicinal chemistry. 2012 Jun; 52(?):98-110. doi: 10.1016/j.ejmech.2012.03.008. [PMID: 22483632]
  • Emi Matsui, Kento Takayama, Eiji Sato, Nobuyuki Okamura. The influence of glycyrrhiza and antibiotics on the purgative action of sennoside a from Daiokanzoto in mice. Biological & pharmaceutical bulletin. 2011; 34(9):1438-42. doi: 10.1248/bpb.34.1438. [PMID: 21881230]
  • Rui Xie, Jun Wen, Hua Wei, Guorong Fan, Dabing Zhang. High-throughput determination of faropenem in human plasma and urine by on-line solid-phase extraction coupled to high-performance liquid chromatography with UV detection and its application to the pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2010 May; 52(1):114-21. doi: 10.1016/j.jpba.2009.12.010. [PMID: 20036477]
  • Stanley C Gill, Christopher M Rubino, Jennifer Bassett, Lynda Miller, Paul G Ambrose, Sujata M Bhavnani, Amber Beaudry, Jinfang Li, Kimberly Clawson Stone, Ian Critchley, Nebojsa Janjic, Henry S Heine. Pharmacokinetic-pharmacodynamic assessment of faropenem in a lethal murine Bacillus anthracis inhalation postexposure prophylaxis model. Antimicrobial agents and chemotherapy. 2010 May; 54(5):1678-83. doi: 10.1128/aac.00737-08. [PMID: 20145081]
  • Magdalena Stoczko, Jean-Marie Frère, Gian Maria Rossolini, Jean-Denis Docquier. Functional diversity among metallo-beta-lactamases: characterization of the CAR-1 enzyme of Erwinia carotovora. Antimicrobial agents and chemotherapy. 2008 Jul; 52(7):2473-9. doi: 10.1128/aac.01062-07. [PMID: 18443127]
  • Noriyuki Hiraga, Tetsuro Muratani, Seiji Naito, Tetsuro Matsumoto. Genetic analysis of faropenem-resistant Enterococcus faecalis in urinary isolates. The Journal of antibiotics. 2008 Apr; 61(4):213-21. doi: 10.1038/ja.2008.31. [PMID: 18503200]
  • Shouhong Gao, Wansheng Chen, Xia Tao, Haijun Miao, Shaolin Yang, Rong Wu. Determination of faropenem in human plasma and urine by liquid chromatography-tandem mass spectrometry. Biomedical chromatography : BMC. 2008 Jan; 22(1):5-12. doi: 10.1002/bmc.886. [PMID: 17604362]
  • Uttam Bhaumik, Animesh Ghosh, Uday S Chakrabarty, Uttam Mandal, Anirbandeep Bose, Ayan Das, Kamala Kanta Ray, Tapan K Pal. Evaluation of the bioequivalence of two faropenem formulations in healthy Indian subjects. Arzneimittel-Forschung. 2008; 58(12):681-5. doi: 10.1055/s-0031-1296571. [PMID: 19202741]
  • Ramakrishna V S Nirogi, Vishwottam N Kandikere, Wishu Shrivastava, Koteshwara Mudigonda. Quantification of faropenem in human plasma by high-performance liquid chromatography. Arzneimittel-Forschung. 2005; 55(12):762-6. doi: 10.1055/s-0031-1296927. [PMID: 16430031]
  • I Gustafsson, O Cars. The influence of protein binding on the antibacterial activity of faropenem against Haemophilus influenzae. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2004 Oct; 10(10):934-7. doi: 10.1111/j.1469-0691.2004.00977.x. [PMID: 15373892]
  • Tetsuro Muratani, Tetsuro Matsumoto. Bacterial resistance to antimicrobials in urinary isolates. International journal of antimicrobial agents. 2004 Sep; 24 Suppl 1(?):S28-31. doi: 10.1016/j.ijantimicag.2004.02.001. [PMID: 15364302]
  • A MacGowan, K Bowker. In vitro studies on the impact of human serum on the antibacterial effect of faropenem. Journal of chemotherapy (Florence, Italy). 2004 Feb; 16(1):23-9. doi: 10.1179/joc.2004.16.1.23. [PMID: 15077995]
  • F J Boswell, J P Ashby, J M Andrews, R Wise. Effect of protein binding on the in vitro activity and pharmacodynamics of faropenem. The Journal of antimicrobial chemotherapy. 2002 Oct; 50(4):525-32. doi: 10.1093/jac/dkf155. [PMID: 12356797]
  • F-J Schmitz, M Boos, S Mayer, J Verhoef, D Milatovic, A C Fluit. In vitro activity of faropenem and 20 other compounds against beta-lactamase-positive and -negative Moraxella catarrhalis and Haemophilus influenzae isolates and the effect of serum on faropenem MICs. The Journal of antimicrobial chemotherapy. 2002 Jan; 49(1):220-3. doi: 10.1093/jac/49.1.220. [PMID: 11751796]
  • Akira Tsuji. Transporter-mediated Drug Interactions. Drug metabolism and pharmacokinetics. 2002; 17(4):253-74. doi: 10.2133/dmpk.17.253. [PMID: 15618677]
  • H Uchino, I Tamai, H Yabuuchi, K China, K Miyamoto, E Takeda, A Tsuji. Faropenem transport across the renal epithelial luminal membrane via inorganic phosphate transporter Npt1. Antimicrobial agents and chemotherapy. 2000 Mar; 44(3):574-7. doi: 10.1128/aac.44.3.574-577.2000. [PMID: 10681320]