Polyoxyethylene 40 monostearate (BioDeep_00000034305)
human metabolite Endogenous
代谢物信息卡片
化学式: C20H40O3 (328.297729)
中文名称: 聚乙二醇硬脂酸酯, 乙二醇单硬脂酸酯
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CCCCCCCCCCCCCCCCCC(=O)OCCO
InChI: InChI=1S/C20H40O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-20(22)23-19-18-21/h21H,2-19H2,1H3
描述信息
Polyoxyethylene 40 monostearate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
D013501 - Surface-Active Agents > D011092 - Polyethylene Glycols
D001697 - Biomedical and Dental Materials
It is used as a food additive .
同义名列表
167 个代谢物同义名
17-Hydroxy-3,6,9,12,15-pentaoxaheptadec-1-yl octadecanoate; Stearic acid, monoester with polyethylene glycol; Stearic acid, monoester with ethylene glycol; Polyoxyethylene stearate (mol. wt. 600-2000); Stearate, monoester with ethylene glycol; Glycol, polyethylene monostearate #6000; Octadecanoic acid, 2-hydroxyethyl ester; Octadecanoic acid 2-hydroxyethyl ester; Glycol, polyethylene monostearate #200; Polyethylene glycol (100) monostearate; Polyethylene glycol monostearate #1000; Polyethylene glycol monostearate #6000; Polyethylene glycol monostearate #400; Glycol polyethylene monostearate #200; Polyethylene glycol monostearate #200; Polyethylene glycol monostearate #40; Poly(oxyethylene) stearic acid ester; Glycols, polyethylene, monostearate; Octadecanoate, 2-hydroxyethyl ester; Polyoxyethylene 40 monostearic acid; Octadecanoate 2-hydroxyethyl ester; Polyethylene glycol 8 monostearate; Stearic acid, 2-hydroxyethyl ester; Polyoxyethylene-(40)-monostearate; Ethylene glycol monostearic acid; Polyoxyethylate (9) stearic acid; Polyethyleneglycols monostearate; Polyethylene glycol monostearate; Polyoxyethylene 40 monostearate; Ethylene glycol monostearate se; Polyethyleneglycols monstearate; Polyethylene oxide monostearate; Polyoxyethylene-8-monostearate; Polyoxyl 40 stearate (JP15/nf); Poly(oxyethylene) monostearate; Ethylene glycol, monostearate; Polyoxyethylene (8) stearate; Polyethylene glycol stearate; Ethylene glycol stearic acid; Ethylene glycol monostearate; 2-Hydroxyethyl octadecanoate; Polyoxyethylene monostearate; Polyoxyethylene 50 stearate; Polyoxyethylene 40 stearate; polyethyleneglycol stearate; 2-Hydroxyethyl stearic acid; Polyethylene oxide stearate; Polyoxyethylene(8)stearate; Poly(oxyethylene) stearate; Ethylene glycol stearate; Polyoxyethylene stearate; Ethoxylated stearic acid; Polyoxyl 50 stearic acid; Polyoxyl 40 stearic acid; Glycol monostearic acid; Polyoxyl 8 stearic acid; 2-Hydroxyethyl stearate; Glycol monostearate se; Macrogol stearate 2000; Polyoxyl stearic acid; Stabilisant delta-118; Polyoxyl 40 stearate; Macrogolstearate 400; Polyoxyl 50 stearate; Glycol monostearate; Polyoxyl 8 stearate; Glycol stearic acid; Nissan nonion S 15; Glycol stearate se; Polyoxyl stearate; Nissan nonion S-2; Perphinol 45/100; PEG-150 stearate; Trydet sa series; Prodhybase ethyl; Arosurf 1855E40; Prodhybase 4000; Glycol stearate; Slovasol MKS 16; Emulphor VT-650; PEG-10 stearate; PEG-40 stearate; Empilan CQ-100; Empilan CP-100; Macrogol ester; peg-8 stearate; Akyporox S 100; Pegosperse S 9; Ethofat 60/20; Nikkol mys 40; Ethofat 60/25; Ionet MS-1000; Nikkol mys-25; Nikkol mys 45; tego-Stearate; Ethofat 60/15; Emcol H 35-a; Cerasynt 660; Empilan 2848; Clindrol seg; Nikkol mys 4; Prodhybase P; Stearoks 920; Emerest 2350; Peg stearate; Cithrol 10MS; kessco X-211; PEG-stearate; lipo-Peg 4-S; Cremophor S9; Trydet sa 40; Emerest 2640; Cremophor a; Nonion S 15; Emanon 3199; Lipal 400-S; Prodhybas N; Cerasynt MN; Polystate b; Emunon 3115; Emanon 3113; Stearox 920; Monthybase; Parastarin; Nonion S 4; Cerasynt m; Stearoxa-6; USAF ke-11; Clearate g; Soromin-SG; Nonion S 2; Cithrol PS; Nikkol mys; Stearoks 6; Lamacit ca; PEG 100MS; PMS no. 1; Lipo egms; PMS no. 2; PEG 600MS; Lipal 15S; Stearox-6; Stearox 6; Polystate; Myrj 52S; Nonex 29; Nonex 28; Nonex 54; Nonex 63; Monthyle; Stenol 8; Nonex 36; Nonex 53; Magi 45; Myrj 51; Myrj 53; Myrj 52; Lactine; Tegin g; Myrj 45; Myrj 59; Myrj 49; Sedetol; Ivorit; S 151; MYRJ; EM
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:167626
- ChEBI: CHEBI:32027
- PubChem: 24762
- HMDB: HMDB0032477
- ChEMBL: CHEMBL2355383
- Wikipedia: Glycol_stearate
- KNApSAcK: C00017965
- foodb: FDB010109
- chemspider: 23148
- CAS: 86418-55-5
- CAS: 9004-99-3
- CAS: 111-60-4
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Galina B Diakova, Zhongmin Du, Alexander L Klibanov. Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles.
Investigative radiology.
2020 11; 55(11):736-740. doi:
10.1097/rli.0000000000000699
. [PMID: 32569011] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Prasant Nahak, Rahul L Gajbhiye, Gourab Karmakar, Pritam Guha, Biplab Roy, Shila Elizabeth Besra, Alexey G Bikov, Alexander V Akentiev, Boris A Noskov, Kaushik Nag, Parasuraman Jaisankar, Amiya Kumar Panda. Orcinol Glucoside Loaded Polymer - Lipid Hybrid Nanostructured Lipid Carriers: Potential Cytotoxic Agents against Gastric, Colon and Hepatoma Carcinoma Cell Lines.
Pharmaceutical research.
2018 Aug; 35(10):198. doi:
10.1007/s11095-018-2469-3
. [PMID: 30151753] - Cihui Tian, Sajid Asghar, Yifan Wu, Zhipeng Chen, Xin Jin, Lining Yin, Lin Huang, Qineng Ping, Yanyu Xiao. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.
International journal of nanomedicine.
2017; 12(?):7897-7911. doi:
10.2147/ijn.s145988
. [PMID: 29138557] - Shouwen Zhang, Jie Wang, Jin Pan. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats.
Drug delivery.
2016 Nov; 23(9):3696-3703. doi:
10.1080/10717544.2016.1223218
. [PMID: 27749105] - Dan Shan, Jason Li, Ping Cai, Preethy Prasad, Franky Liu, Andrew Michael Rauth, Xiao Yu Wu. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells.
Drug delivery and translational research.
2015 Feb; 5(1):15-26. doi:
10.1007/s13346-014-0210-2
. [PMID: 25787336] - Tongyuan Lin, Qingying Fang, Daiyin Peng, Xia Huang, Tingting Zhu, Qing Luo, Kai Zhou, Weidong Chen. PEGylated non-ionic surfactant vesicles as drug delivery systems for Gambogenic acid.
Drug delivery.
2013 Sep; 20(7):277-84. doi:
10.3109/10717544.2013.836618
. [PMID: 24044645] - Zhigui Su, Yongping Shi, Yanyu Xiao, Minjie Sun, Qineng Ping, Li Zong, Sai Li, Jiangxiu Niu, Aiwen Huang, Weiliang You, Yinan Chen, Xi Chen, Jia Fei, Jia Tian. Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization.
International journal of pharmaceutics.
2013 Apr; 447(1-2):281-92. doi:
10.1016/j.ijpharm.2013.01.068
. [PMID: 23396258] - Miguel Wulff-Pérez, Juan de Vicente, Antonio Martín-Rodríguez, María J Gálvez-Ruiz. Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration.
International journal of pharmaceutics.
2012 Feb; 423(2):161-6. doi:
10.1016/j.ijpharm.2011.12.025
. [PMID: 22209995] - Adam J Shuhendler, Robert Staruch, Wendy Oakden, Claudia R Gordijo, Andrew M Rauth, Greg J Stanisz, Rajiv Chopra, Xiao Yu Wu. Thermally-triggered 'off-on-off' response of gadolinium-hydrogel-lipid hybrid nanoparticles defines a customizable temperature window for non-invasive magnetic resonance imaging thermometry.
Journal of controlled release : official journal of the Controlled Release Society.
2012 Feb; 157(3):478-84. doi:
10.1016/j.jconrel.2011.09.061
. [PMID: 21939700] - Zhigui Su, Jiangxiu Niu, Yanyu Xiao, Qineng Ping, Minjie Sun, Aiwen Huang, Weiliang You, Xiaoye Sang, Dongfen Yuan. Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine.
Molecular pharmaceutics.
2011 Oct; 8(5):1641-51. doi:
10.1021/mp100463n
. [PMID: 21770405] - Mona M A Abdel-Mottaleb, Dirk Neumann, Alf Lamprecht. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2011 Sep; 79(1):36-42. doi:
10.1016/j.ejpb.2011.04.009
. [PMID: 21558002] - Ming-Jun Tsai, Yaw-Bin Huang, Pao-Chu Wu, Yaw-Syan Fu, Yao-Ren Kao, Jia-You Fang, Yi-Hung Tsai. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations.
Journal of pharmaceutical sciences.
2011 Feb; 100(2):547-57. doi:
10.1002/jps.22285
. [PMID: 20740670] - Jie Shen, Yanping Deng, Xuefeng Jin, Qineng Ping, Zhigui Su, Lejun Li. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: Improving in vivo ocular distribution.
International journal of pharmaceutics.
2010 Dec; 402(1-2):248-53. doi:
10.1016/j.ijpharm.2010.10.008
. [PMID: 20934499] - Mona M A Abdel-Mottaleb, Dirk Neumann, Alf Lamprecht. In vitro drug release mechanism from lipid nanocapsules (LNC).
International journal of pharmaceutics.
2010 May; 390(2):208-13. doi:
10.1016/j.ijpharm.2010.02.001
. [PMID: 20149853] - Jie Shen, Yu Wang, Qineng Ping, Yanyu Xiao, Xin Huang. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery.
Journal of controlled release : official journal of the Controlled Release Society.
2009 Aug; 137(3):217-23. doi:
10.1016/j.jconrel.2009.04.021
. [PMID: 19393270] - Yuyi Shen, Robert L Powell, Marjorie L Longo. Influence of the dissolution rate on the collapse and shedding behavior of monostearin/monopalmitin-rich coated microbubbles.
Langmuir : the ACS journal of surfaces and colloids.
2008 Sep; 24(18):10035-40. doi:
10.1021/la801668h
. [PMID: 18717575] - Hong Yuan, Jing Miao, Yong-Zhong Du, Jian You, Fu-Qiang Hu, Su Zeng. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells.
International journal of pharmaceutics.
2008 Feb; 348(1-2):137-45. doi:
10.1016/j.ijpharm.2007.07.012
. [PMID: 17714896] - Hong Yuan, Lei-Lei Wang, Yong-Zhong Du, Jian You, Fu-Qiang Hu, Su Zeng. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification.
Colloids and surfaces. B, Biointerfaces.
2007 Nov; 60(2):174-9. doi:
10.1016/j.colsurfb.2007.06.011
. [PMID: 17656075] - Yang Wang, Wei Wu. In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages.
Drug delivery.
2006 May; 13(3):189-92. doi:
10.1080/10717540500315930
. [PMID: 16556570] - Jun-chan Li, Xian-yi Sha, Li-jun Zhang, Xiao-ling Fang. [9-nitrocamptothecin nanostructured lipid carrier system: in vitro releasing characteristics, uptake by cells, and tissue distribution in vivo].
Yao xue xue bao = Acta pharmaceutica Sinica.
2005 Nov; 40(11):970-5. doi:
NULL
. [PMID: 16499078] - R D Juch, T Rufli, C Surber. Pastes: what do they contain? How do they work?.
Dermatology (Basel, Switzerland).
1994; 189(4):373-7. doi:
10.1159/000246882
. [PMID: 7873823] - C Tasset, V Préat, M Roland. The influence of Myrj 59 on the solubility, toxicity and activity of amphotericin B.
The Journal of pharmacy and pharmacology.
1991 May; 43(5):297-302. doi:
10.1111/j.2042-7158.1991.tb06693.x
. [PMID: 1680169]