Nothofagin (BioDeep_00000244172)
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C21H24O10 (436.13694039999996)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 0.29%
分子结构信息
SMILES: C(c1ccc(cc1)O)CC(=O)c1c(cc(c(c1O)[C@H]1[C@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O)O)O
InChI: InChI=1S/C21H24O10/c22-8-14-17(27)19(29)20(30)21(31-14)16-13(26)7-12(25)15(18(16)28)11(24)6-3-9-1-4-10(23)5-2-9/h1-2,4-5,7,14,17,19-23,25-30H,3,6,8H2/t14-,17-,19+,20+,21+/m1/s1
描述信息
Nothofagin is a natural product found in Aspalathus linearis with data available.
同义名列表
8 个代谢物同义名
1-(3-beta-D-Glucopyranosyl-2,4,6-trihydroxyphenyl)-3-(4-hydroxyphenyl)-1-propanone; Nothofagin; 1-[3-[(2S,3R,4R,5S,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]-2,4,6-tris(oxidanyl)phenyl]-3-(4-hydroxyphenyl)propan-1-one; 3-(4-hydroxyphenyl)-1-[2,4,6-trihydroxy-3-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]phenyl]propan-1-one; (1S)-1,5-Anhydro-1-{2,4,6-trihydroxy-3-[3-(4-hydroxyphenyl)propanoyl]phenyl}-D-glucitol; 3-C-glucosylphloretin; E7F; 1- (3-beta-D-Glucopyranosyl-2,4,6-trihydroxyphenyl) -3- (4-hydroxyphenyl) -1-propanone
数据库引用编号
12 个数据库交叉引用编号
- PubChem: 21722188
- Metlin: METLIN52317
- ChEMBL: CHEMBL4082869
- Wikipedia: Nothofagin
- LipidMAPS: LMPK12120514
- MeSH: nothofagin
- KNApSAcK: C00014024
- CAS: 11023-94-2
- medchemexpress: HY-113919
- Flavonoid: FL1DAACS0001
- LOTUS: LTS0119320
- LOTUS: LTS0144573
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
21 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- flavonoid di-C-glucosylation:
UDP-α-D-glucose + nothofagin ⟶ 3',5'-di-C-glucosylphloretin + H+ + UDP
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(20)
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
17 个相关的物种来源信息
- 70004 - Aspalathus: LTS0119320
- 70004 - Aspalathus: LTS0144573
- 155124 - Aspalathus linearis: 10.1016/J.MRGENTOX.2007.03.009
- 155124 - Aspalathus linearis: LTS0119320
- 155124 - Aspalathus linearis: LTS0144573
- 2759 - Eukaryota: LTS0119320
- 2759 - Eukaryota: LTS0144573
- 3803 - Fabaceae: LTS0119320
- 3803 - Fabaceae: LTS0144573
- 3398 - Magnoliopsida: LTS0119320
- 3398 - Magnoliopsida: LTS0144573
- 35493 - Streptophyta: LTS0119320
- 35493 - Streptophyta: LTS0144573
- 58023 - Tracheophyta: LTS0119320
- 58023 - Tracheophyta: LTS0144573
- 33090 - Viridiplantae: LTS0119320
- 33090 - Viridiplantae: LTS0144573
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Aline Aparecida Macedo Marques, Claudio Henrique Francisconi da Silva, Priscila de Souza, Camila L B de Almeida, Valdir Cechinel-Filho, Emerson L B Lourenço, Arquimedes Gasparotto Junior. Nitric oxide and Ca2+-activated high-conductance K+ channels mediate nothofagin-induced endothelium-dependent vasodilation in the perfused rat kidney.
Chemico-biological interactions.
2020 Aug; 327(?):109182. doi:
10.1016/j.cbi.2020.109182
. [PMID: 32554038] - Sumin Yang, Changhun Lee, Bong-Seon Lee, Eui Kyun Park, Kyung-Min Kim, Jong-Sup Bae. Renal protective effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in a mouse model of sepsis.
Pharmacological reports : PR.
2018 Dec; 70(6):1195-1201. doi:
10.1016/j.pharep.2018.07.004
. [PMID: 30340097] - Camila Leandra Bueno de Almeida, Valdir Cechinel-Filho, Thaise Boeing, Luísa Nathália Bolda Mariano, Luísa Mota da Silva, Sérgio Faloni de Andrade, Priscila de Souza. Prolonged diuretic and saluretic effect of nothofagin isolated from Leandra dasytricha (A. Gray) Cogn. leaves in normotensive and hypertensive rats: Role of antioxidant system and renal protection.
Chemico-biological interactions.
2018 Jan; 279(?):227-233. doi:
10.1016/j.cbi.2017.11.021
. [PMID: 29198636] - Alexander Gutmann, Alexander Lepak, Margo Diricks, Tom Desmet, Bernd Nidetzky. Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP.
Biotechnology journal.
2017 Jul; 12(7):. doi:
10.1002/biot.201600557
. [PMID: 28429856] - Takamitsu Ito, Shunsuke Fujimoto, Fumiaki Suito, Makoto Shimosaka, Goro Taguchi. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants.
The Plant journal : for cell and molecular biology.
2017 Jul; 91(2):187-198. doi:
10.1111/tpj.13555
. [PMID: 28370711] - Camila Leandra Bueno de Almeida, Thaise Boeing, Lincon Bordignon Somensi, Viviane Miranda Bispo Steimbach, Luísa Mota da Silva, Sérgio Faloni de Andrade, Franco Delle Monache, Valdir Cechinel-Filho, Priscila de Souza. Diuretic, natriuretic and potassium-sparing effect of nothofagin isolated from Leandra dasytricha (A. Gray) Cogn. leaves in normotensive and hypertensive rats.
Chemico-biological interactions.
2017 Apr; 268(?):103-110. doi:
10.1016/j.cbi.2017.03.004
. [PMID: 28284659] - Dalene de Beer, Christiaan J Malherbe, Theresa Beelders, Elize L Willenburg, D Jacobus Brand, Elizabeth Joubert. Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: sample loading and compound stability considerations.
Journal of chromatography. A.
2015 Feb; 1381(?):29-36. doi:
10.1016/j.chroma.2014.12.078
. [PMID: 25614190] - Sae-Kwang Ku, Soyoung Kwak, Yaesol Kim, Jong-Sup Bae. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo.
Inflammation.
2015 Feb; 38(1):445-55. doi:
10.1007/s10753-014-0049-1
. [PMID: 25338943] - Wonhwa Lee, Kyung-Min Kim, Jong-Sup Bae. Ameliorative Effect of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) on HMGB1-Induced Septic Responses In Vitro and In Vivo.
The American journal of Chinese medicine.
2015; 43(5):991-1012. doi:
10.1142/s0192415x15500573
. [PMID: 26224030] - Madeline J Simpson, Daisy Hjelmqvist, Camilo López-Alarcón, Nadja Karamehmedovic, Thomas G Minehan, Akop Yepremyan, Baback Salehani, Eduardo Lissi, Elizabeth Joubert, Klas I Udekwu, Emilio I Alarcon. Anti-peroxyl radical quality and antibacterial properties of rooibos infusions and their pure glycosylated polyphenolic constituents.
Molecules (Basel, Switzerland).
2013 Sep; 18(9):11264-80. doi:
10.3390/molecules180911264
. [PMID: 24036515] - Lindie Schloms, Karl-Heinz Storbeck, Pieter Swart, Wentzel C A Gelderblom, Amanda C Swart. The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells.
The Journal of steroid biochemistry and molecular biology.
2012 Feb; 128(3-5):128-38. doi:
10.1016/j.jsbmb.2011.11.003
. [PMID: 22101210] - Nicole Krafczyk, Theres Heinrich, Andrea Porzel, Marcus A Glomb. Oxidation of the dihydrochalcone aspalathin leads to dimerization.
Journal of agricultural and food chemistry.
2009 Aug; 57(15):6838-43. doi:
10.1021/jf901614y
. [PMID: 19601579] - D P Singh, R Govindarajan, A K S Rawat. High-performance liquid chromatography as a tool for the chemical standardisation of Triphala--an Ayurvedic formulation.
Phytochemical analysis : PCA.
2008 Mar; 19(2):164-8. doi:
10.1002/pca.1032
. [PMID: 17879225] - Lorenzo Bramati, Markus Minoggio, Claudio Gardana, Paolo Simonetti, Pierluigi Mauri, Piergiorgio Pietta. Quantitative characterization of flavonoid compounds in Rooibos tea (Aspalathus linearis) by LC-UV/DAD.
Journal of agricultural and food chemistry.
2002 Sep; 50(20):5513-9. doi:
10.1021/jf025697h
. [PMID: 12236672]