Marein (BioDeep_00000231193)
Secondary id: BioDeep_00000276275
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C21H22O11 (450.11620619999997)
中文名称: 马里甙, 马里苷
谱图信息:
最多检出来源 Viridiplantae(plant) 1.09%
分子结构信息
SMILES: c(c2)(C(=O)C=Cc(c3)cc(c(O)c3)O)c(O)c(c(c2)OC(O1)C(O)C(O)C(O)C1CO)O
InChI: InChI=1S/C21H22O11/c22-8-15-18(28)19(29)20(30)21(32-15)31-14-6-3-10(16(26)17(14)27)11(23)4-1-9-2-5-12(24)13(25)7-9/h1-7,15,18-22,24-30H,8H2/b4-1+
描述信息
Marein is a member of flavonoids and a glycoside.
Marein is a natural product found in Lasthenia californica, Viguiera dentata, and other organisms with data available.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Marein has the neuroprotective effect due to a reduction of damage to mitochondria function and activation of the AMPK signal pathway. Marein improves insulin resistance induced by high glucose in HepG2 cells through CaMKK/AMPK/GLUT1 to promote glucose uptake, through IRS/Akt/GSK-3β to increase glycogen synthesis, and through Akt/FoxO1 to decrease gluconeogenesis. Marein is a HDAC inhibitor with an IC50 of 100 μM. Marein has beneficial antioxidative, antihypertensive, antihyperlipidemic and antidiabetic effects[1][2][3].
Marein has the neuroprotective effect due to a reduction of damage to mitochondria function and activation of the AMPK signal pathway. Marein improves insulin resistance induced by high glucose in HepG2 cells through CaMKK/AMPK/GLUT1 to promote glucose uptake, through IRS/Akt/GSK-3β to increase glycogen synthesis, and through Akt/FoxO1 to decrease gluconeogenesis. Marein is a HDAC inhibitor with an IC50 of 100 μM. Marein has beneficial antioxidative, antihypertensive, antihyperlipidemic and antidiabetic effects[1][2][3].
同义名列表
14 个代谢物同义名
(E)-1-(2,3-dihydroxy-4-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)phenyl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one; (E)-3-(3,4-dihydroxyphenyl)-1-[2,3-dihydroxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one; 2-PROPEN-1-ONE, 3-(3,4-DIHYDROXYPHENYL)-1-(4-(.BETA.-D-GLUCOPYRANOSYLOXY)-2,3-DIHYDROXYPHENYL)-, (E)-; 2-Propen-1-one, 3-(3,4-dihydroxyphenyl)-1-(4-(beta-D-glucopyranosyloxy)-2,3-dihydroxyphenyl)-, (E)-; (2E)-3-(3,4-DIHYDROXYPHENYL)-1-(4-(.BETA.-D-GLUCOPYRANOSYLOXY)-2,3-DIHYDROXYPHENYL)-2-PROPEN-1-ONE; (E)-3-(3,4-Dihydroxyphenyl)-1-(4-(beta-D-glucopyranosyloxy)-2,3-dihydroxyphenyl)-2-propen-1-one; 2-PROPEN-1-ONE, 3-(3,4-DIHYDROXYPHENYL)-1-(4-(.BETA.-D-GLUCOPYRANOSYLOXY)-2,3-DIHYDROXYPHENYL)-; 3-(3,4-DIHYDROXYPHENYL)-1-(4-(.BETA.-D-GLUCOPYRANOSYLOXY)-2,3-DIHYDROXYPHENYL)-2-PROPEN-1-ONE; CHALCONE, 2,3,3,4,4-PENTAHYDROXY-, 4-.BETA.-D-GLUCOPYRANOSIDE; OKANIN 4-O-.BETA.-D-GLUCOPYRANOSIDE; Okanin-4-O-glucoside; Marein with hplc; Marein; (E) -4- (beta-D-Glucopyranosyloxy) -2,3,3,4-tetrahydroxychalcone
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:179868
- PubChem: 6441269
- Metlin: METLIN51960
- ChEMBL: CHEMBL490510
- Wikipedia: Marein
- LipidMAPS: LMPK12120156
- MeSH: marein
- ChemIDplus: 0000535966
- KNApSAcK: C00007893
- CAS: 197164-34-4
- CAS: 535-96-6
- MoNA: PS085501
- MoNA: PS085502
- MoNA: PS085503
- MoNA: PS085504
- MoNA: PS085505
- MoNA: PS085506
- MoNA: PS085507
- MoNA: PS085508
- MoNA: PS085509
- MoNA: PS085510
- MoNA: PS085511
- MoNA: PS085512
- MoNA: PT208550
- MoNA: PT108550
- MoNA: PR100806
- MoNA: PR100359
- MoNA: PR020071
- medchemexpress: HY-N7676
- Flavonoid: FL1C3CGS0002
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xinyu Zhou, Wei Cheng, Xinmei Chen, Kaixuan Wang. UPLC-quadrupole time-of-flight-tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt.
Biomedical chromatography : BMC.
2024 Mar; 38(3):e5797. doi:
10.1002/bmc.5797
. [PMID: 38084786] - Pei-Pei Zhang, Bing-Yu Zhuo, Zi-Wei Duan, Xin Li, Song-Li Huang, Qian Cao, Ting Zhao, Sheng-Li Wei, Xiu-Hua Hu, Yuan Zhang. Marein reduces lipid levels via modulating the PI3K/AKT/mTOR pathway to induce lipophagy.
Journal of ethnopharmacology.
2023 Aug; 312(?):116523. doi:
10.1016/j.jep.2023.116523
. [PMID: 37080364] - Guanghao Niu, Mi Zhou, Feng Wang, Jingxing Yang, Jie Huang, Zengyan Zhu. Marein ameliorates Ang II/hypoxia-induced abnormal glucolipid metabolism by modulating the HIF-1α/PPARα/γ pathway in H9c2 cells.
Drug development research.
2021 06; 82(4):523-532. doi:
10.1002/ddr.21770
. [PMID: 33314222] - Yanli Guo, Zheng Ran, Yongwei Zhang, Zhipeng Song, Lifeng Wang, Lan Yao, Minfang Zhang, Jialiang Xin, Xinmin Mao. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Nov; 131(?):110684. doi:
10.1016/j.biopha.2020.110684
. [PMID: 33152903] - Mingyan Yao, Jing Zhang, Zhihong Li, Shuqin Guo, Xue Zhou, Wenjing Zhang. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-κB pathway.
International immunopharmacology.
2020 Mar; 80(?):106126. doi:
10.1016/j.intimp.2019.106126
. [PMID: 31931363] - An Peng, Lianzhu Lin, Mouming Zhao, Baoguo Sun. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte.
Food research international (Ottawa, Ont.).
2019 09; 123(?):64-74. doi:
10.1016/j.foodres.2019.04.046
. [PMID: 31285013] - Lan Yao, Jie Li, Linlin Li, Xinxia Li, Rui Zhang, Yujie Zhang, Xinmin Mao. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways.
BMC complementary and alternative medicine.
2019 Jan; 19(1):14. doi:
10.1186/s12906-018-2410-7
. [PMID: 30630477] - Shing-Chung Lam, Sio-Fong Lam, Jing Zhao, Shao-Ping Li. Rapid Identification and Comparison of Compounds with Antioxidant Activity in Coreopsis tinctoria Herbal Tea by High-Performance Thin-Layer Chromatography Coupled with DPPH Bioautography and Densitometry.
Journal of food science.
2016 Sep; 81(9):C2218-23. doi:
10.1111/1750-3841.13402
. [PMID: 27516219] - Baoping Jiang, Liang Le, Wei Zhai, Wenting Wan, Keping Hu, Peng Yong, Chunnian He, Lijia Xu, Peigen Xiao. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2016 Aug; 23(9):891-900. doi:
10.1016/j.phymed.2016.05.004
. [PMID: 27387397] - Baoping Jiang, Liang Le, Haibo Liu, Lijia Xu, Chunnian He, Keping Hu, Yong Peng, Peigen Xiao. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells.
Free radical research.
2016; 50(11):1173-1187. doi:
10.1080/10715762.2016.1222374
. [PMID: 27596733] - Teresa Dias, Bo Liu, Peter Jones, Peter J Houghton, Helder Mota-Filipe, Alexandra Paulo. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells.
Journal of ethnopharmacology.
2012 Jan; 139(2):485-92. doi:
10.1016/j.jep.2011.11.038
. [PMID: 22143153] - Teresa Dias, Maria Rosário Bronze, Peter J Houghton, Hélder Mota-Filipe, Alexandra Paulo. The flavonoid-rich fraction of Coreopsis tinctoria promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats.
Journal of ethnopharmacology.
2010 Nov; 132(2):483-90. doi:
10.1016/j.jep.2010.08.048
. [PMID: 20813179] - Teresa Dias, Hélder Mota-Filipe, Bo Liu, Peter Jones, Peter J Houghton, Alexandra Paulo. Recovery of oral glucose tolerance by Wistar rats after treatment with Coreopsis tinctoria infusion.
Phytotherapy research : PTR.
2010 May; 24(5):699-705. doi:
10.1002/ptr.2998
. [PMID: 19827015]