Dihydro-5-methyl-2(3H)-furanone (BioDeep_00000021596)
human metabolite
代谢物信息卡片
化学式: C5H8O2 (100.0524)
中文名称: 丙位戊内酯, γ-戊内酯
谱图信息:
最多检出来源 Homo sapiens(feces) 51.9%
分子结构信息
SMILES: CC1CCC(=O)O1
InChI: InChI=1S/C5H8O2/c1-4-2-3-5(6)7-4/h4H,2-3H2,1H3
描述信息
Dihydro-5-methyl-2(3H)-furanone, also known as 4-hydroxypentanoic acid lactone or 4-methyl-gamma-butyrolactone, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, dihydro-5-methyl-2(3H)-furanone is considered to be a fatty ester lipid molecule. Dihydro-5-methyl-2(3H)-furanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral.
Constituent of crude pyroligneous acid. It is used in smoke flavours.
同义名列表
24 个代谢物同义名
4-Methyl-4-hydroxybutanoic acid lactone; 4-Methyl-4-hydroxybutanoate lactone; (±)-Dihydro-5-methyl-2(3H)-furanone; Dihydro-5-methyl-2(3H)-furanone; 4-Hydroxypentanoic acid lactone; 4-Hydroxyvaleric acid lactone; 4-Methyl-gamma-butyrolactone; 4-Hydroxypentanoate lactone; 4-Hydroxyvalerate lactone; 4-Methyl-γ-butyrolactone; 4-Methyl-g-butyrolactone; gamma-Pentanolactone; 5-methyloxolan-2-one; gamma-Valerolactone; gamma-Pentalactone; g-Pentanolactone; Γ-pentanolactone; γ-Valerolactone; 4-Valerolactone; g-Valerolactone; Γ-pentalactone; g-Pentalactone; 4-Pentanolide; gamma-Valerolactone
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:48569
- PubChem: 7921
- HMDB: HMDB0033840
- ChEMBL: CHEMBL195593
- Wikipedia: Gamma-Valerolactone
- KNApSAcK: C00055472
- foodb: FDB012014
- chemspider: 7633
- CAS: 219630-19-0
- CAS: 57129-69-8
- CAS: 108-29-2
- PMhub: MS000066895
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 13443 - Coffea arabica: 10.1021/JF60160A010
- 36050 - Fusarium poae: 10.1271/BBB1961.49.3227
- 9606 - Homo sapiens: -
- 29780 - Mangifera indica: 10.1021/JF00097A028
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Daniele di Menno di Bucchianico, Giordano Emrys Scarponi, Jean-Christophe Buvat, Sébastien Leveneur, Valeria Casson Moreno. From biomass-derived fructose to γ-valerolactone: Process design and techno-economic assessment.
Bioresource technology.
2024 Jun; 401(?):130753. doi:
10.1016/j.biortech.2024.130753
. [PMID: 38685516] - Jacob Lessard-Lord, Serge Auger, Sarah Demers, Pier-Luc Plante, Pierre Picard, Yves Desjardins. Automated High-Throughput Quantification of Phenyl-γ-valerolactones and Creatinine in Urine by Laser Diode Thermal Desorption.
Journal of agricultural and food chemistry.
2023 Nov; 71(44):16787-16796. doi:
10.1021/acs.jafc.3c03888
. [PMID: 37890868] - Benjamin W Hall, Craig A Bingman, Brian G Fox, Daniel R Noguera, Timothy J Donohue. A broad specificity β-propeller enzyme from Rhodopseudomonas palustris that hydrolyzes many lactones including γ-valerolactone.
The Journal of biological chemistry.
2023 01; 299(1):102782. doi:
10.1016/j.jbc.2022.102782
. [PMID: 36502920] - Wendy J Hollands, Mark Philo, Natalia Perez-Moral, Paul W Needs, George M Savva, Paul A Kroon. Monomeric Flavanols Are More Efficient Substrates for Gut Microbiota Conversion to Hydroxyphenyl-γ-Valerolactone Metabolites Than Oligomeric Procyanidins: A Randomized, Placebo-Controlled Human Intervention Trial.
Molecular nutrition & food research.
2020 05; 64(10):e1901135. doi:
10.1002/mnfr.201901135
. [PMID: 32223044] - Giovanna Baron, Alessandra Altomare, Luca Regazzoni, Laura Fumagalli, Angelica Artasensi, Elisa Borghi, Emerenziana Ottaviano, Cristian Del Bo, Patrizia Riso, Pietro Allegrini, Giovanna Petrangolini, Paolo Morazzoni, Antonella Riva, Lolita Arnoldi, Marina Carini, Giancarlo Aldini. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation.
Biochemical pharmacology.
2020 03; 173(?):113726. doi:
10.1016/j.bcp.2019.113726
. [PMID: 31778647] - Donato Angelino, Diogo Carregosa, Cristina Domenech-Coca, Monia Savi, Inês Figueira, Nicoletta Brindani, Saebyeol Jang, Sukla Lakshman, Aleksey Molokin, Joseph F Urban, Cindy D Davis, Maria Alexandra Brito, Kwang Sik Kim, Furio Brighenti, Claudio Curti, Cinta Bladé, Josep M Del Bas, Donatella Stilli, Gloria I Solano-Aguilar, Claudia Nunes Dos Santos, Daniele Del Rio, Pedro Mena. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in Silico, In Vitro and In Vivo Experimental Models.
Nutrients.
2019 Nov; 11(11):. doi:
10.3390/nu11112678
. [PMID: 31694297] - Younghyun Lee, Hee Yang, Gihyun Hur, Jiwoo Yu, Sumin Park, Jong Hun Kim, Jung Han Yoon Park, Han-Seung Shin, Jong-Eun Kim, Ki Won Lee. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a metabolite of procyanidins in cacao, suppresses MDI-induced adipogenesis by regulating cell cycle progression through direct inhibition of CDK2/cyclin O.
Food & function.
2019 May; 10(5):2958-2969. doi:
10.1039/c9fo00334g
. [PMID: 31073569] - Pedro Mena, Letizia Bresciani, Nicoletta Brindani, Iziar A Ludwig, Gema Pereira-Caro, Donato Angelino, Rafael Llorach, Luca Calani, Furio Brighenti, Michael N Clifford, Chris I R Gill, Alan Crozier, Claudio Curti, Daniele Del Rio. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
Natural product reports.
2019 05; 36(5):714-752. doi:
10.1039/c8np00062j
. [PMID: 30468210] - Yiping Luo, Zheng Li, Yini Zuo, Zhishan Su, Changwei Hu. Effects of γ-Valerolactone/H2O Solvent on the Degradation of pubescens for Its Fullest Utilization.
Journal of agricultural and food chemistry.
2018 Jun; 66(24):6094-6103. doi:
10.1021/acs.jafc.8b01563
. [PMID: 29799753] - Gregorio Peron, Stefania Sut, Anna Pellizzaro, Paola Brun, Dario Voinovich, Ignazio Castagliuolo, Stefano Dall'Acqua. The antiadhesive activity of cranberry phytocomplex studied by metabolomics: Intestinal PAC-A metabolites but not intact PAC-A are identified as markers in active urines against uropathogenic Escherichia coli.
Fitoterapia.
2017 Oct; 122(?):67-75. doi:
10.1016/j.fitote.2017.08.014
. [PMID: 28844930] - Gina Borges, Justin J J van der Hooft, Alan Crozier. A comprehensive evaluation of the [2-14C](-)-epicatechin metabolome in rats.
Free radical biology & medicine.
2016 10; 99(?):128-138. doi:
10.1016/j.freeradbiomed.2016.08.001
. [PMID: 27495388] - Uwaila Omoruyi, Samuel Page, Jason Hallett, Philip W Miller. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
ChemSusChem.
2016 08; 9(16):2037-47. doi:
10.1002/cssc.201600517
. [PMID: 27464831] - Tingwei Zhang, Wenzhi Li, Zhiping Xu, Qiyu Liu, Qiaozhi Ma, Hasan Jameel, Hou-min Chang, Longlong Ma. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.
Bioresource technology.
2016 Jun; 209(?):108-14. doi:
10.1016/j.biortech.2016.02.108
. [PMID: 26967333] - Melanie Mülek, Agnes Fekete, Johannes Wiest, Ulrike Holzgrabe, Martin J Mueller, Petra Högger. Profiling a gut microbiota-generated catechin metabolite's fate in human blood cells using a metabolomic approach.
Journal of pharmaceutical and biomedical analysis.
2015 Oct; 114(?):71-81. doi:
10.1016/j.jpba.2015.04.042
. [PMID: 26025814] - Gustavo Metzker, Antonio C B Burtoloso. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
Chemical communications (Cambridge, England).
2015 Sep; 51(75):14199-202. doi:
10.1039/c5cc02993g
. [PMID: 26258183] - Ana Rodriguez-Mateos, Tania Cifuentes-Gomez, Isidro Gonzalez-Salvador, Javier I Ottaviani, Hagen Schroeter, Malte Kelm, Christian Heiss, Jeremy P E Spencer. Influence of age on the absorption, metabolism, and excretion of cocoa flavanols in healthy subjects.
Molecular nutrition & food research.
2015 Aug; 59(8):1504-12. doi:
10.1002/mnfr.201500091
. [PMID: 25981347] - Quang Anh Tuan Le, Seonghoon Kim, Rakwoo Chang, Yong Hwan Kim. Insights into the Lactonase Mechanism of Serum Paraoxonase 1 (PON1): Experimental and Quantum Mechanics/Molecular Mechanics (QM/MM) Studies.
The journal of physical chemistry. B.
2015 Jul; 119(30):9571-85. doi:
10.1021/acs.jpcb.5b03184
. [PMID: 26146888] - Akiko Takagaki, Yuko Kato, Fumio Nanjo. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin.
Archives of microbiology.
2014 Oct; 196(10):681-95. doi:
10.1007/s00203-014-1006-y
. [PMID: 24947740] - H Andresen-Streichert, H Jungen, A Gehl, A Müller, S Iwersen-Bergmann. Uptake of gamma-valerolactone--detection of gamma-hydroxyvaleric acid in human urine samples.
Journal of analytical toxicology.
2013 May; 37(4):250-4. doi:
10.1093/jat/bkt013
. [PMID: 23486087] - Sys Stybe Johansen, Charlotte Norup Windberg. Simultaneous determination of γ-Hydroxybutyrate (GHB) and its analogues (GBL, 1.4-BD, GVL) in whole blood and urine by liquid chromatography coupled to tandem mass spectrometry.
Journal of analytical toxicology.
2011 Jan; 35(1):8-14. doi:
10.1093/anatox/35.1.8
. [PMID: 21219697] - Daniele Del Rio, Luca Calani, Chiara Cordero, Sara Salvatore, Nicoletta Pellegrini, Furio Brighenti. Bioavailability and catabolism of green tea flavan-3-ols in humans.
Nutrition (Burbank, Los Angeles County, Calif.).
2010 Nov; 26(11-12):1110-6. doi:
10.1016/j.nut.2009.09.021
. [PMID: 20080030] - Edzard Schwedhelm, Renke Maas, Raphael Troost, Rainer H Böger. Clinical pharmacokinetics of antioxidants and their impact on systemic oxidative stress.
Clinical pharmacokinetics.
2003; 42(5):437-59. doi:
10.2165/00003088-200342050-00003
. [PMID: 12739983] - M Iwata, Y Takeuchi, N Hisanaga, Y Ono. Changes of n-hexane metabolites in urine of rats exposed to various concentrations of n-hexane and to its mixture with toluene or MEK.
International archives of occupational and environmental health.
1983; 53(1):1-8. doi:
10.1007/bf00406172
. [PMID: 6654498] - M Iwata, Y Takeuchi, N Hisanaga, Y Ono. A study on biological monitoring of n-hexane exposure.
International archives of occupational and environmental health.
1983; 51(3):253-60. doi:
10.1007/bf00377756
. [PMID: 6852931]