Salicylic acid beta-D-glucoside (BioDeep_00000019077)
human metabolite natural product
代谢物信息卡片
化学式: C13H16O8 (300.0845136)
中文名称: 2-(Beta-d-吡喃葡萄糖氧基)苯甲酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=CC=C(C(=C1)C(=O)O)OC2C(C(C(C(O2)CO)O)O)O
InChI: InChI=1S/C13H16O8/c14-5-8-9(15)10(16)11(17)13(21-8)20-7-4-2-1-3-6(7)12(18)19/h1-4,8-11,13-17H,5H2,(H,18,19)
描述信息
Constituent of various plant subspecies e.g. white mustard seed (Sinapis alba), bell pepper (Capsicum annuum) and leaves of thyme, rosemary, basil and sweet marjoram. Salicylic acid glucoside is found in many foods, some of which are herbs and spices, yellow bell pepper, orange bell pepper, and red bell pepper.
Salicylic acid beta-D-glucoside is found in herbs and spices. Salicylic acid beta-D-glucoside is a constituent of various plant species e.g. white mustard seed (Sinapis alba), bell pepper (Capsicum annuum) and leaves of thyme, rosemary, basil and sweet marjoram.
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
同义名列表
13 个代谢物同义名
2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid; 2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate; Benzoic acid, 2-(beta-D-glucopyranosyloxy)-; 2-(beta-D-Glucopyranosyloxy)-benzoic acid; Salicylic acid beta-D-glucoside; Salicylic acid beta-glucoside; Salicylic acid b-D-glucoside; Salicylic acid β-D-glucoside; Salicylate beta-D-glucoside; Salicylic acid glucoside; Salicylate β-D-glucoside; Salicylate b-D-glucoside; Salicylate glucoside
数据库引用编号
10 个数据库交叉引用编号
- ChEBI: CHEBI:176884
- PubChem: 4596190
- HMDB: HMDB0041271
- MetaCyc: CPD-12628
- KNApSAcK: C00056823
- foodb: FDB021183
- chemspider: 3788014
- CAS: 10366-91-3
- PMhub: MS000014877
- LOTUS: LTS0265288
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
10 个相关的物种来源信息
- 2759 - Eukaryota: LTS0265288
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0265288
- 4070 - Solanaceae: LTS0265288
- 4107 - Solanum: LTS0265288
- 4113 - Solanum tuberosum: 10.1016/0031-9422(95)00866-7
- 4113 - Solanum tuberosum: LTS0265288
- 35493 - Streptophyta: LTS0265288
- 58023 - Tracheophyta: LTS0265288
- 33090 - Viridiplantae: LTS0265288
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Peizhou Xu, Tingkai Wu, Asif Ali, Jinhao Wang, Yongqiong Fang, Runrun Qiang, Yutong Liu, Yunfeng Tian, Su Liu, Hongyu Zhang, Yongxiang Liao, Xiaoqiong Chen, Farwa Shoaib, Changhui Sun, Zhengjun Xu, Duo Xia, Hao Zhou, Xianjun Wu. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810646
. [PMID: 36142555] - Sayaka Iizasa, Ei'ichi Iizasa, Keiichi Watanabe, Yukio Nagano. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants.
BMC genomics.
2017 12; 18(1):995. doi:
10.1186/s12864-017-4372-4
. [PMID: 29284410] - Christian Hackmann, Christin Korneli, Magdalene Kutyniok, Tino Köster, Matthias Wiedenlübbert, Caroline Müller, Dorothee Staiger. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Plant, cell & environment.
2014 Mar; 37(3):696-706. doi:
10.1111/pce.12188
. [PMID: 23961939] - Nami Himeno, Wataru Saburi, Shinji Wakuta, Ryosuke Takeda, Hideyuki Matsuura, Kensuke Nabeta, Sompong Sansenya, James R Ketudat Cairns, Haruhide Mori, Ryozo Imai, Hirokazu Matsui. Identification of rice β-glucosidase with high hydrolytic activity towards salicylic acid β-D-glucoside.
Bioscience, biotechnology, and biochemistry.
2013; 77(5):934-9. doi:
10.1271/bbb.120889
. [PMID: 23649259] - Yoshiteru Noutoshi, Masateru Okazaki, Tatsuya Kida, Yuta Nishina, Yoshihiko Morishita, Takumi Ogawa, Hideyuki Suzuki, Daisuke Shibata, Yusuke Jikumaru, Atsushi Hanada, Yuji Kamiya, Ken Shirasu. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis.
The Plant cell.
2012 Sep; 24(9):3795-804. doi:
10.1105/tpc.112.098343
. [PMID: 22960909] - Jun Huang, V-S Bhinu, Xiang Li, Zafer Dallal Bashi, Rong Zhou, Abdelali Hannoufa. Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis.
Planta.
2009 Oct; 230(5):1057-69. doi:
10.1007/s00425-009-1007-2
. [PMID: 19714359] - Astrid Ratzinger, Nadine Riediger, Andreas von Tiedemann, Petr Karlovsky. Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum.
Journal of plant research.
2009 Sep; 122(5):571-9. doi:
10.1007/s10265-009-0237-5
. [PMID: 19449088] - Kenji Umemura, Junji Satou, Michiaki Iwata, Nobuyuki Uozumi, Jinichiro Koga, Tomonori Kawano, Tomokazu Koshiba, Hiroyuki Anzai, Masaaki Mitomi. Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants.
The Plant journal : for cell and molecular biology.
2009 Feb; 57(3):463-72. doi:
10.1111/j.1365-313x.2008.03697.x
. [PMID: 18826428] - K Nobuta, R A Okrent, M Stoutemyer, N Rodibaugh, L Kempema, M C Wildermuth, R W Innes. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis.
Plant physiology.
2007 Jun; 144(2):1144-56. doi:
10.1104/pp.107.097691
. [PMID: 17468220] - Shigemi Seo, Shinpei Katou, Hideharu Seto, Kenji Gomi, Yuko Ohashi. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants.
The Plant journal : for cell and molecular biology.
2007 Mar; 49(5):899-909. doi:
10.1111/j.1365-313x.2006.03003.x
. [PMID: 17253983] - John V Dean, Leila A Mohammed, Terry Fitzpatrick. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures.
Planta.
2005 May; 221(2):287-96. doi:
10.1007/s00425-004-1430-3
. [PMID: 15871031] - Zhimin Yin, Jacek Hennig, Maria Szwacka, Stefan Malepszy. Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli.
Journal of plant physiology.
2004 May; 161(5):621-9. doi:
10.1078/0176-1617-00737
. [PMID: 15202719] - Marianne C Verberne, Nynke Brouwer, Federica Delbianco, Huub J M Linthorst, John F Bol, Robert Verpoorte. Method for the extraction of the volatile compound salicylic acid from tobacco leaf material.
Phytochemical analysis : PCA.
2002 Jan; 13(1):45-50. doi:
10.1002/pca.615
. [PMID: 11899606] - H Takahashi, Z Chen, H Du, Y Liu, D F Klessig. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels.
The Plant journal : for cell and molecular biology.
1997 May; 11(5):993-1005. doi:
10.1046/j.1365-313x.1997.11050993.x
. [PMID: 9193071] - D F Klessig, J Malamy, J Hennig, P Sanchez-Casas, J Indulski, G Grynkiewicz, Z Chen. Induction, modification, and perception of the salicylic acid signal in plant defence.
Biochemical Society symposium.
1994; 60(?):219-29. doi:
"
. [PMID: 7639781] - J Hennig, J Malamy, G Grynkiewicz, J Indulski, D F Klessig. Interconversion of the salicylic acid signal and its glucoside in tobacco.
The Plant journal : for cell and molecular biology.
1993 Oct; 4(4):593-600. doi:
10.1046/j.1365-313x.1993.04040593.x
. [PMID: 8252063]