Sulforaphane (BioDeep_00000017454)

   

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


(R)-Sulforaphane;(-)-Sulforaphane;4-Methylsulfinylbutyl isothiocyanate

化学式: C6H11NOS2 (177.0282036)
中文名称: 莱菔硫烷, 萝卜硫素
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 4.38%

分子结构信息

SMILES: CS(=O)CCCCN=C=S
InChI: InChI=1S/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3

描述信息

Sulforaphane (SFN) is the most characterized isothiocyanate. SFN has received a great deal of attention because of its ability to simultaneously modulate multiple cellular targets involved in cancer development, including: (i) DNA protection by modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (ii) inhibition of cell proliferation and induction of apoptosis, thereby retarding or eliminating clonal expansion of initiated, transformed, and/or neoplastic cells; (iii) inhibition of neoangiogenesis, progression of benign tumors to malignant tumors, and metastasis formation. SFN is therefore able to prevent, delay, or reverse preneoplastic lesions, as well as to act on cancer cells as a therapeutic agent. Taking into account this evidence and its favorable toxicological profile, SFN can be viewed as a conceptually promising agent in cancer prevention and/or therapy. SFN is the hydrolysis product of glucoraphanin, particularly high in the young sprouts of broccoli and cauliflower. SFN can also be obtained by eating cruciferous vegetables such as brussel sprouts, broccoli, cauliflower, bok choy, kale, collards, arugula, broccoli sprouts, chinese broccoli, broccoli raab, kohlrabi, mustard, turnip, radish, watercress and cabbage (PMID:17134937).
Sulforaphane is an isothiocyanate having a 4-(methylsulfinyl)butyl group attached to the nitrogen. It has a role as an antineoplastic agent, a plant metabolite, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a sulfoxide and an isothiocyanate.
Sulforaphane is a natural product found in Brassica oleracea var. sabauda, Arabidopsis thaliana, and other organisms with data available.
Sulforaphane is a naturally-occurring phytochemical belonging to the class of isothiocyanates. As the aglycone metabolite of glucosinolate glucoraphanin (sulforaphane glucosinolate), sulforaphane acts as an antioxidant and potent stimulator of endogenous detoxifying enzymes. This agent displays anticarcinogenic properties due to its ability to induce phase II detoxification enzymes, such as glutathione S-transferase and quinone reductase, thereby providing protection against certain carcinogens and toxic, reactive oxygen species. Broccoli sprouts contain large amounts of sulforaphane, which is also found in other cruciferous vegetables including cabbage and kale. (NCI04)
Present in brassicas. Potential nutriceutical. (R)-Sulforaphane is found in brassicas.
An isothiocyanate having a 4-(methylsulfinyl)butyl group attached to the nitrogen.
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents
D000970 - Antineoplastic Agents

同义名列表

39 个代谢物同义名

(R)-Sulforaphane;(-)-Sulforaphane;4-Methylsulfinylbutyl isothiocyanate; ISOTHIOCYANIC ACID, 4-(METHYLSULFINYL)BUTYL ESTER; DL-Sulforaphane, >=90\\% (HPLC), synthetic, liquid; Butane, 1-isothiocyanato-4-[(S)-methylsulfinyl]-; (S)-1-Isothiocyanato-4-(methylsulfinyl)butane; Butane, 1-isothiocyanato-4-(methylsulfinyl)-; 1-Isothiocyanato-4-(methylsulfinyl)butane #; 1-Isothiocyanato-4-(methylsulfinyl)-butane; 1-Isothiocyanato-4-(methylsulfinyl)butane; 1-isothiocyanato-4-methanesulfinylbutane; 1-isothiocyanato-4-methylsulphinylbutane; 1-isothiocyanato-4-methylsulfinyl-butane; 1-isothiocyanato-4-methylsulfinylbutane; 4-(Methylsulfinyl)-butyl isothiocyanate; 4-isothiocyanatobutyl methyl sulfoxide; 4-(Methylsulfinyl)Butyl Isothiocyanate; 4-Methylsulfinyl butyl isothiocyanate; 4-Methylsulphinylbutyl glucosinolate; 4-Methylsulfinylbutyl isothiocyanate; 4-methylsulfoxybutylisothiocyanate; Methylsulfoxybutylisothiocyanate; SULFORAPHANE (+/-)-FORM [MI]; SULFORAPHANE, (+/-)-; sulforaphane, (R)-; (+/-)-sulforaphane; (R)-Sulphoraphane; (+-)-sulforaphane; R,S-Sulforaphane; D,L-Sulforaphane; (S)-sulforaphane; (R)-sulforaphane; DL-Sulforaphane; S)-Sulforaphane; sulphoraphane; sulforaphane; Sulforathane; Sulphorafan; sulforafan; SFN



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

29 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Martí Wilson-Verdugo, Brandon Bustos-García, Olga Adame-Guerrero, Jaqueline Hersch-González, Nallely Cano-Domínguez, Maribel Soto-Nava, Carlos A Acosta, Teresa Tusie-Luna, Santiago Avila-Rios, Lilia G Noriega, Victor J Valdes. Reversal of high-glucose-induced transcriptional and epigenetic memories through NRF2 pathway activation. Life science alliance. 2024 Aug; 7(8):. doi: 10.26508/lsa.202302382. [PMID: 38755006]
  • Yusuke Yamaguchi, Mikio Sugiki, Motomi Shimizu, Kazuki Ogawa, Hitomi Kumagai. Comparative analysis of isothiocyanates in eight cruciferous vegetables and evaluation of the hepatoprotective effects of 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) from daikon radish (Raphanus sativus L.) sprouts. Food & function. 2024 May; 15(9):4894-4904. doi: 10.1039/d4fo00133h. [PMID: 38597802]
  • Laura Yunuen Hernández-Sánchez, María Eva González-Trujano, Diego A Moreno, David Martínez-Vargas, Heike Vibrans, Alberto Hernandez-Leon, Alejandro Dorazco-González, Francisco Pellicer, Marcos Soto-Hernández. Antinociceptive effects of Raphanus sativus sprouts involve the opioid and 5-HT1A serotonin receptors, cAMP/cGMP pathways, and the central activity of sulforaphane. Food & function. 2024 May; 15(9):4773-4784. doi: 10.1039/d3fo05229j. [PMID: 38469873]
  • Saeed Ghanbari Hassan Kiadeh, Somayeh Rahaiee, Hossein Azizi, Mostafa Govahi. The synthesis of broccoli sprout extract-loaded silk fibroin nanoparticles as efficient drug delivery vehicles: development and characterization. Pharmaceutical development and technology. 2024 Apr; 29(4):359-370. doi: 10.1080/10837450.2024.2336101. [PMID: 38546461]
  • Lixia He, Hanmin Jiang, Yaotong Li, Xu Zhang, Wenting Sun, Ce Liu, Zekai Zhao, Chengrong Yun, Hui Li, Chunguo Wang. Sulforaphane-Enriched Extracts from Broccoli Exhibit Antimicrobial Activity against Plant Pathogens, Promising a Natural Antimicrobial Agent for Crop Protection. Biomolecules. 2024 Mar; 14(3):. doi: 10.3390/biom14030352. [PMID: 38540770]
  • Ao-Chun Yue, Xu-Dong Zhou, Hui-Ping Song, Xu-Han Liu, Ming-Jun Bi, Wei Han, Qin Li. Effect and molecular mechanism of Sulforaphane alleviates brain damage caused by acute carbon monoxide poisoning:Network pharmacology analysis, molecular docking, and experimental evidence. Environmental toxicology. 2024 Mar; 39(3):1140-1162. doi: 10.1002/tox.24000. [PMID: 37860845]
  • Ruqing Xu, Yue Wu, Xia Xiang, Xiaoqin Lv, Miao He, Chang Xu, Guoqi Lai, Tingxiu Xiang. Sulforaphane effectively inhibits HBV by altering Treg/Th17 immune balance and the MIF-macrophages polarizing axis in vitro and in vivo. Virus research. 2024 03; 341(?):199316. doi: 10.1016/j.virusres.2024.199316. [PMID: 38215982]
  • Antonio Costa-Pérez, Paola Sánchez-Bravo, Sonia Medina, Raúl Domínguez-Perles, Cristina García-Viguera. Bioaccessible Organosulfur Compounds in Broccoli Stalks Modulate the Inflammatory Mediators Involved in Inflammatory Bowel Disease. International journal of molecular sciences. 2024 Jan; 25(2):. doi: 10.3390/ijms25020800. [PMID: 38255874]
  • Marcia Ribeiro, Ludmila Fmf Cardozo, Bruna R Paiva, Beatriz Germer Baptista, Susane Fanton, Livia Alvarenga, Ligia Soares Lima, Isadora Britto, Lia S Nakao, Denis Fouque, Marcelo Ribeiro-Alves, Denise Mafra. Sulforaphane Supplementation Did Not Modulate NRF2 and NF-kB mRNA Expressions in Hemodialysis Patients. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2024 Jan; 34(1):68-75. doi: 10.1053/j.jrn.2023.08.008. [PMID: 37619675]
  • John A Bouranis, Laura M Beaver, Carmen P Wong, Jaewoo Choi, Sean Hamer, Ed W Davis, Kevin S Brown, Duo Jiang, Thomas J Sharpton, Jan F Stevens, Emily Ho. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Molecular nutrition & food research. 2023 Dec; ?(?):e2300286. doi: 10.1002/mnfr.202300286. [PMID: 38143283]
  • Nieves Baenas, Angélica Vega-García, Joaquín Manjarrez-Marmolejo, Diego A Moreno, Iris A Feria-Romero. The preventive effects of broccoli bioactives against cancer: Evidence from a validated rat glioma model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 168(?):115720. doi: 10.1016/j.biopha.2023.115720. [PMID: 37839110]
  • Shanmugam Thangapandiyan, Tamilselvan Hema, Selvaraj Miltonprabu, Manickam Paulpandi, Uma Dutta. Sulforaphane ameliorate Arsenic induced cardiotoxicity in rats: Role of PI3k/Akt mediated Nrf2 signaling pathway. Journal of biochemical and molecular toxicology. 2023 Oct; ?(?):e23576. doi: 10.1002/jbt.23576. [PMID: 37906532]
  • Ahhyeon Chun, So Jeong Paik, Jongbeom Park, Ryeongeun Kim, Sujeong Park, Sung Keun Jung, Soo Rin Kim. Physicochemical and Functional Properties of Yeast-Fermented Cabbage. Journal of microbiology and biotechnology. 2023 Oct; 33(10):1329-1336. doi: 10.4014/jmb.2302.02025. [PMID: 37463863]
  • Omar Guadarrama-Enríquez, Gabriel Fernando Moreno-Pérez, María Eva González-Trujano, Guadalupe Esther Ángeles-López, Rosa Ventura-Martínez, Irene Díaz-Reval, Agustina Cano-Martínez, Francisco Pellicer, Nieves Baenas, Diego A Moreno, Cristina García-Viguera. Antinociceptive and antiedema effects produced in rats by Brassica oleracea var. italica sprouts involving sulforaphane. Inflammopharmacology. 2023 Sep; ?(?):. doi: 10.1007/s10787-023-01326-6. [PMID: 37728726]
  • Jining Yang, Xinxin Guo, Tianyou Li, Yingquan Xie, Dawei Wang, Long Yi, Mantian Mi. Sulforaphane Inhibits Exhaustive Exercise-Induced Liver Injury and Transcriptome-Based Mechanism Analysis. Nutrients. 2023 Jul; 15(14):. doi: 10.3390/nu15143220. [PMID: 37513640]
  • Hussain Ahmed, Muhammad Umar Ijaz, Mehreen Riaz, Sarwat Jahan. Sulforaphane inclusion in a freezing medium augments post-thaw motility, functional and biochemical features, and fertility potential of buffalo (Bubalus bubalis) spermatozoa. Research in veterinary science. 2023 May; 158(?):196-202. doi: 10.1016/j.rvsc.2023.03.020. [PMID: 37030095]
  • Bo Wang, Zhizhou Xu, Yangyang Zhao, Guichun Wu, Kaihuai Li, Rongxian Hou, Baodian Guo, Bao Tang, Yancun Zhao, Fengquan Liu. SstF, a novel sulforaphane-sensing transcription factor of Xanthomonas campestris, is required for sulforaphane tolerance and virulence. Molecular plant pathology. 2023 05; 24(5):452-465. doi: 10.1111/mpp.13314. [PMID: 36829260]
  • Shiyan Liu, Yuan Zhang, Xiangyu Zheng, Ziling Wang, Pan Wang, Mengdi Zhang, Mengfan Shen, Yongping Bao, Dan Li. Sulforaphane Inhibits Foam Cell Formation and Atherosclerosis via Mechanisms Involving the Modulation of Macrophage Cholesterol Transport and the Related Phenotype. Nutrients. 2023 Apr; 15(9):. doi: 10.3390/nu15092117. [PMID: 37432260]
  • Zhiqiang Feng, Tengfei Wang, Yawen Sun, Siying Chen, Haisheng Hao, Weihua Du, Huiying Zou, Dawei Yu, Huabin Zhu, Yunwei Pang. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. Ecotoxicology and environmental safety. 2023 Apr; 254(?):114747. doi: 10.1016/j.ecoenv.2023.114747. [PMID: 36907095]
  • Jiaying Wu, Weiling Guo, Shumao Cui, Xin Tang, Qiuxiang Zhang, Wenwei Lu, Yan Jin, Jianxin Zhao, Bingyong Mao, Wei Chen. Broccoli seed extract rich in polysaccharides and glucoraphanin ameliorates DSS-induced colitis via intestinal barrier protection and gut microbiota modulation in mice. Journal of the science of food and agriculture. 2023 Mar; 103(4):1749-1760. doi: 10.1002/jsfa.12382. [PMID: 36495024]
  • Zinuo Chen, Ruikun Du, Laura Cooper, Jazmin Galvan Achi, Meiyue Dong, Yan Ran, Jiwei Zhang, Peng Zhan, Lijun Rong, Qinghua Cui. Sulforaphane is a reversible covalent inhibitor of 3-chymotrypsin-like protease of SARS-CoV-2. Journal of medical virology. 2023 Feb; ?(?):. doi: 10.1002/jmv.28609. [PMID: 36840402]
  • Ghadha Ibrahim Fouad, Mostafa Mabrouk, Sara A M El-Sayed, Maha Z Rizk, Hanan H Beherei. Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicology mechanisms and methods. 2023 Feb; ?(?):1-17. doi: 10.1080/15376516.2023.2177219. [PMID: 36775846]
  • Tao Zhang, Johanna Holman, Delaney McKinstry, Bruno C Trindade, Kathryn A Eaton, Jonny Mendoza-Castrejon, Sharon Ho, Emily Wells, Hebao Yuan, Bo Wen, Duxin Sun, Grace Y Chen, Yanyan Li. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. The Journal of nutritional biochemistry. 2023 02; 112(?):109215. doi: 10.1016/j.jnutbio.2022.109215. [PMID: 36370930]
  • Lixia Hong, Yide Xu, Dongdong Wang, Qi Zhang, Xiaoting Li, Chunfeng Xie, Jieshu Wu, Caiyun Zhong, Jinyan Fu, Shanshan Geng. Sulforaphane ameliorates bisphenol A-induced hepatic lipid accumulation by inhibiting endoplasmic reticulum stress. Scientific reports. 2023 01; 13(1):1147. doi: 10.1038/s41598-023-28395-5. [PMID: 36670177]
  • Ghadha Ibrahim Fouad. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovascular toxicology. 2023 01; 23(1):46-60. doi: 10.1007/s12012-022-09776-0. [PMID: 36650404]
  • Dana J Somers, David B Kushner, Alexandria R McKinnis, Dzejlana Mehmedovic, Rachel S Flame, Thomas M Arnold. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PloS one. 2023; 18(10):e0293075. doi: 10.1371/journal.pone.0293075. [PMID: 37856454]
  • María Ángeles Núñez-Sánchez, María Antonia Martínez-Sánchez, Marina Verdejo-Sánchez, Paula García-Ibáñez, Alba Oliva Bolarín, Bruno Ramos-Molina, Diego A Moreno, Antonio J Ruiz-Alcaraz. Anti-Leukemic Activity of Brassica-Derived Bioactive Compounds in HL-60 Myeloid Leukemia Cells. International journal of molecular sciences. 2022 Nov; 23(21):. doi: 10.3390/ijms232113400. [PMID: 36362202]
  • Jinyu Bao, Xu Lu, Lei Ma, Xiumin Zhang, Peng Tian, Xiaoling Zhang, Sheng Li, Shaoying Ma, Jie Yang, Yaqi Lu, Yunchun Wei, Congcong Zhang, Xiaotong Shi. Transcriptome analysis of genes related to glucoraphanin and sulforaphane synthesis in methyl jasmonate treated broccoli (Brassica oleracea var. italica) hairy roots. Journal of plant research. 2022 Nov; 135(6):757-770. doi: 10.1007/s10265-022-01407-7. [PMID: 35999478]
  • Xiao Men, Xionggao Han, Se-Jeong Lee, Keun-Tae Park, Jong-Kwon Han, Sun-Il Choi, Ok-Hwan Lee. Anti-adipogenic Effects of Sulforaphane-rich Ingredient with Broccoli Sprout and Mustard Seed in 3T3-L1 Preadipocytes. Planta medica. 2022 Oct; ?(?):. doi: 10.1055/a-1853-7101. [PMID: 35577064]
  • Ghadha Ibrahim Fouad, Sara A M El-Sayed, Mostafa Mabrouk, Kawkab A Ahmed, Hanan H Beherei. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotoxicity research. 2022 Oct; 40(5):1479-1498. doi: 10.1007/s12640-022-00555-x. [PMID: 35969308]
  • Bo Wang, Kaihuai Li, Guichun Wu, Zhizhou Xu, Rongxian Hou, Baodian Guo, Yancun Zhao, Fengquan Liu. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. Molecular plant pathology. 2022 10; 23(10):1508-1523. doi: 10.1111/mpp.13245. [PMID: 35942507]
  • Shumin Li, Zhongkai Xu, Majed Alrobaian, Obaid Afzal, Imran Kazmi, Waleed H Almalki, Abdulmalik Saleh Alfawaz Altamimi, Fahad A Al-Abbasi, Khalid S Alharbi, Waleed M Altowayan, Tanuja Singh, Md Habban Akhter, Manish Gupta, Mahfoozur Rahman, Sarwar Beg. EGF-functionalized lipid-polymer hybrid nanoparticles of 5-fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma. Biotechnology and applied biochemistry. 2022 Oct; 69(5):2205-2221. doi: 10.1002/bab.2279. [PMID: 34775646]
  • Xiao Men, Xionggao Han, Se-Jeong Lee, Geon Oh, Keun-Tae Park, Jong-Kwon Han, Sun-Il Choi, Ok-Hwan Lee. Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds In Vitro and In Vivo. Nutrients. 2022 Sep; 14(18):. doi: 10.3390/nu14183814. [PMID: 36145190]
  • Somaya Z Mansour, Enas M Moustafa, Fatma S M Moawed. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell stress & chaperones. 2022 09; 27(5):499-511. doi: 10.1007/s12192-022-01286-w. [PMID: 35779187]
  • Shaoying Ma, Jinyu Bao, Yaqi Lu, Xu Lu, Peng Tian, Xiaoling Zhang, Jie Yang, Xiaotong Shi, Zhihui Pu, Sheng Li. Glucoraphanin and sulforaphane biosynthesis by melatonin mediating nitric oxide in hairy roots of broccoli (Brassica oleracea L. var. italica Planch): insights from transcriptome data. BMC plant biology. 2022 Aug; 22(1):403. doi: 10.1186/s12870-022-03747-x. [PMID: 35974315]
  • Masashi Masuda, Risa Yoshida-Shimizu, Yuki Mori, Kohta Ohnishi, Yuichiro Adachi, Maiko Sakai, Serina Kabutoya, Hirokazu Ohminami, Hisami Yamanaka-Okumura, Hironori Yamamoto, Makoto Miyazaki, Yutaka Taketani. Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. The Journal of nutritional biochemistry. 2022 08; 106(?):109017. doi: 10.1016/j.jnutbio.2022.109017. [PMID: 35461903]
  • Ya Zhang, Qifang Wu, Jian Liu, Zhongshan Zhang, Xiaojing Ma, Yaoyue Zhang, Jiawen Zhu, Ronald W Thring, Mingjiang Wu, Yitian Gao, Haibin Tong. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Aug; 152(?):113273. doi: 10.1016/j.biopha.2022.113273. [PMID: 35709656]
  • Ahmed I Ashmawy, Hanan S El-Abhar, Dalaal M Abdallah, Mennatallah A Ali. Chloroquine modulates the sulforaphane anti-obesity mechanisms in a high-fat diet model: Role of JAK-2/ STAT-3/ SOCS-3 pathway. European journal of pharmacology. 2022 Jul; 927(?):175066. doi: 10.1016/j.ejphar.2022.175066. [PMID: 35643302]
  • Yi-Kuan Wu, Zheng-Nan Ren, Sheng-Long Zhu, Yun-Zhou Wu, Gang Wang, Hao Zhang, Wei Chen, Zhao He, Xian-Long Ye, Qi-Xiao Zhai. Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta pharmacologica Sinica. 2022 Jun; 43(6):1473-1483. doi: 10.1038/s41401-021-00786-2. [PMID: 34654875]
  • Chia Siang Kow, Dinesh Sangarran Ramachandram, Syed Shahzad Hasan. Use of sulforaphane in COVID-19: Clinical trials are needed. Molecular immunology. 2022 05; 145(?):78-79. doi: 10.1016/j.molimm.2022.03.001. [PMID: 35303531]
  • Taoqi Zhou, Minming Zhou, Chaochao Tong, Mali Zhuo. Cauliflower bioactive compound sulforaphane inhibits breast cancer development by suppressing NF-κB /MMP-9 signaling pathway expression. Cellular and molecular biology (Noisy-le-Grand, France). 2022 Apr; 68(4):134-143. doi: 10.14715/cmb/2022.68.4.17. [PMID: 35988280]
  • Rui Tang, Qian-Qian Cao, Sheng-Wei Hu, Lu-Juan He, Peng-Fei Du, Gang Chen, Rao Fu, Fei Xiao, Yi-Rong Sun, Ji-Chun Zhang, Qi Qi. Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription. Acta pharmacologica Sinica. 2022 Apr; 43(4):829-839. doi: 10.1038/s41401-021-00727-z. [PMID: 34272506]
  • Alvaro A Ordonez, C Korin Bullen, Andres F Villabona-Rueda, Elizabeth A Thompson, Mitchell L Turner, Vanessa F Merino, Yu Yan, John Kim, Stephanie L Davis, Oliver Komm, Jonathan D Powell, Franco R D'Alessio, Robert H Yolken, Sanjay K Jain, Lorraine Jones-Brando. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Communications biology. 2022 03; 5(1):242. doi: 10.1038/s42003-022-03189-z. [PMID: 35304580]
  • Helena Galádová, Zoltán Polozsányi, Albert Breier, Martin Šimkovič. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules. 2022 03; 12(3):. doi: 10.3390/biom12030406. [PMID: 35327598]
  • Zhen Luo, Xuewu Zhang. Brassica oleracea extract, glucosinlates, and sulforaphane promote hair growth in vitro and ex vivo. Journal of cosmetic dermatology. 2022 Mar; 21(3):1178-1184. doi: 10.1111/jocd.14180. [PMID: 33901343]
  • Xiuxia Yang, Pingping Liu, Xiaojing Zhao, Chengcheng Yang, Binhui Li, Ye Liu, Yang Liu. Sulforaphane inhibits cytokine-stimulated chemokine and adhesion molecule expressions in human corneal fibroblasts: Involvement of the MAPK, STAT, and NF-κB signaling pathways. Experimental eye research. 2022 03; 216(?):108946. doi: 10.1016/j.exer.2022.108946. [PMID: 35038457]
  • Weiqiang Liang, Johannes Greven, Athanassios Fragoulis, Klemens Horst, Felix Bläsius, Christoph Wruck, Thomas Pufe, Philipp Kobbe, Frank Hildebrand, Philipp Lichte. Sulforaphane-Dependent Up-Regulation of NRF2 Activity Alleviates Both Systemic Inflammatory Response and Lung Injury After Hemorrhagic Shock/Resuscitation in Mice. Shock (Augusta, Ga.). 2022 02; 57(2):221-229. doi: 10.1097/shk.0000000000001859. [PMID: 34559743]
  • Sachithra S Ranaweera, Premkumar Natraj, Priyanka Rajan, Laksi A Dayarathne, Suyama P Mihindukulasooriya, Duong Thi Thuy Dinh, Youngheun Jee, Chang-Hoon Han. Anti-obesity effect of sulforaphane in broccoli leaf extract on 3T3-L1 adipocytes and ob/ob mice. The Journal of nutritional biochemistry. 2022 02; 100(?):108885. doi: 10.1016/j.jnutbio.2021.108885. [PMID: 34655754]
  • Lei Huang, Canxia He, Sicong Zheng, Chao Wu, Minghua Ren, Yujuan Shan. AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder Cancer. Molecular nutrition & food research. 2022 02; 66(3):e2100738. doi: 10.1002/mnfr.202100738. [PMID: 34791822]
  • Jinwang Li, Siyu Xie, Wendi Teng. Sulforaphane Attenuates Nonalcoholic Fatty Liver Disease by Inhibiting Hepatic Steatosis and Apoptosis. Nutrients. 2021 Dec; 14(1):. doi: 10.3390/nu14010076. [PMID: 35010950]
  • Zi-Tan Peng, Pei Gu. Sulforaphane suppresses autophagy during the malignant progression of gastric carcinoma via activating miR-4521/PIK3R3 pathway. Human & experimental toxicology. 2021 Dec; 40(12_suppl):S711-S720. doi: 10.1177/09603271211054437. [PMID: 34749521]
  • Michelle L Kerns, Anna L Chien, Sewon Kang. A Role for NRF2-Signaling in the Treatment and Prevention of Solar Lentigines. Plastic and reconstructive surgery. 2021 Dec; 148(6S):27S-31S. doi: 10.1097/prs.0000000000008783. [PMID: 34847095]
  • Shoichi Komine, Ikuru Miura, Nao Miyashita, Sechang Oh, Katsuyuki Tokinoya, Junichi Shoda, Hajime Ohmori. Effect of a sulforaphane supplement on muscle soreness and damage induced by eccentric exercise in young adults: A pilot study. Physiological reports. 2021 12; 9(24):e15130. doi: 10.14814/phy2.15130. [PMID: 34927380]
  • Petar D Petrov, Polina Soluyanova, Sonia Sánchez-Campos, José V Castell, Ramiro Jover. Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Dec; 158(?):112664. doi: 10.1016/j.fct.2021.112664. [PMID: 34767876]
  • Lucía Yepes-Molina, Micaela Carvajal. Nanoencapsulation of sulforaphane in broccoli membrane vesicles and their in vitro antiproliferative activity. Pharmaceutical biology. 2021 Dec; 59(1):1490-1504. doi: 10.1080/13880209.2021.1992450. [PMID: 34714214]
  • Shuhua Tian, Yunfan Wang, Xiangfei Li, Jie Liu, Jing Wang, Yingjian Lu. Sulforaphane Regulates Glucose and Lipid Metabolisms in Obese Mice by Restraining JNK and Activating Insulin and FGF21 Signal Pathways. Journal of agricultural and food chemistry. 2021 Nov; 69(44):13066-13079. doi: 10.1021/acs.jafc.1c04933. [PMID: 34706542]
  • Ludmila F M F Cardozo, Livia A Alvarenga, Marcia Ribeiro, Lu Dai, Paul G Shiels, Peter Stenvinkel, Bengt Lindholm, Denise Mafra. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutrition reviews. 2021 10; 79(11):1204-1224. doi: 10.1093/nutrit/nuaa129. [PMID: 33338213]
  • Lorena Avila-Carrasco, Elda Araceli García-Mayorga, Daisy L Díaz-Avila, Idalia Garza-Veloz, Margarita L Martinez-Fierro, Guadalupe T González-Mateo. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206096. [PMID: 34684678]
  • Narueporn Likhitweerawong, Chanisa Thonusin, Nonglak Boonchooduang, Orawan Louthrenoo, Intawat Nookaew, Nipon Chattipakorn, Siriporn C Chattipakorn. Profiles of urine and blood metabolomics in autism spectrum disorders. Metabolic brain disease. 2021 10; 36(7):1641-1671. doi: 10.1007/s11011-021-00788-3. [PMID: 34338974]
  • Li Chen, Wen-Li Zhang, De-Qiong Xie, Wang Jia. Sulforaphane alleviates hepatic ischemia-reperfusion injury through promoting the activation of Nrf-2/HO-1 signaling. Transplant immunology. 2021 10; 68(?):101439. doi: 10.1016/j.trim.2021.101439. [PMID: 34320386]
  • Koji Sato, Hinata Kihara, Yoka Kumazawa, Koki Tatara. Oral chronic sulforaphane effects on heavy resistance exercise: Implications for inflammatory and muscle damage parameters in young practitioners. Nutrition (Burbank, Los Angeles County, Calif.). 2021 10; 90(?):111266. doi: 10.1016/j.nut.2021.111266. [PMID: 34004418]
  • Jenni Kyyriäinen, Natallie Kajevu, Ivette Bañuelos, Leonardo Lara, Anssi Lipponen, Silvia Balosso, Elina Hämäläinen, Shalini Das Gupta, Noora Puhakka, Teemu Natunen, Teresa Ravizza, Annamaria Vezzani, Mikko Hiltunen, Asla Pitkänen. Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910555. [PMID: 34638900]
  • Klaudyna Krause, Agnieszka Pyrczak-Felczykowska, Monika Karczewska, Magdalena Narajczyk, Anna Herman-Antosiewicz, Agnieszka Szalewska-Pałasz, Dariusz Nowicki. Dietary Isothiocyanates, Sulforaphane and 2-Phenethyl Isothiocyanate, Effectively Impair Vibrio cholerae Virulence. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910187. [PMID: 34638525]
  • Junwei Wang, Shuxiang Mao, Qi Wu, Yiming Yuan, Mantian Liang, Shengze Wang, Ke Huang, Qiuyun Wu. Effects of LED illumination spectra on glucosinolate and sulforaphane accumulation in broccoli seedlings. Food chemistry. 2021 Sep; 356(?):129550. doi: 10.1016/j.foodchem.2021.129550. [PMID: 33819785]
  • Kyong-Oh Shin, Kyungho Park. A Newly Developed HPLC-UV/Vis Method Using Chemical Derivatization with 2-Naphthalenethiol for Quantitation of Sulforaphane in Rat Plasma. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185473. [PMID: 34576944]
  • Shabir Ahmad Ganai, Pappu Srinivasan, Sundaraj Rajamanikandan, Basit Amin Shah, Suma Mohan, Mudasir Gani, Bilal Ahmad Padder, Raies A Qadri, M A Bhat, Zahoor Ahmad Baba, Manzoor Ahmad Yatoo. Delineating binding potential, stability of Sulforaphane-N-acetyl-cysteine in the active site of histone deacetylase 2 and testing its cytotoxicity against distinct cancer lines through stringent molecular dynamics, DFT and cell-based assays. Chemical biology & drug design. 2021 09; 98(3):363-376. doi: 10.1111/cbdd.13854. [PMID: 33966346]
  • Ho-Sub Park, Eun-Sang Hwang, Ga-Young Choi, Hyun-Bum Kim, Kyun-Seob Park, Jai-Yoon Sul, Yoonjin Hwang, Geun Wook Choi, Byung Il Kim, Hyunwoo Park, Sungho Maeng, Ji-Ho Park. Sulforaphane enhances long-term potentiation and ameliorate scopolamine-induced memory impairment. Physiology & behavior. 2021 09; 238(?):113467. doi: 10.1016/j.physbeh.2021.113467. [PMID: 34033847]
  • Thu H Le. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension (Dallas, Tex. : 1979). 2021 09; 78(4):936-945. doi: 10.1161/hypertensionaha.121.16510. [PMID: 34455814]
  • John A Bouranis, Laura M Beaver, Jaewoo Choi, Carmen P Wong, Duo Jiang, Thomas J Sharpton, Jan F Stevens, Emily Ho. Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients. 2021 Aug; 13(9):. doi: 10.3390/nu13093013. [PMID: 34578891]
  • Jakub Cedrowski, Kajetan Dąbrowa, Paweł Przybylski, Agnieszka Krogul-Sobczak, Grzegorz Litwinienko. Antioxidant activity of two edible isothiocyanates: Sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfinyl radicals. Food chemistry. 2021 Aug; 353(?):129213. doi: 10.1016/j.foodchem.2021.129213. [PMID: 33774519]
  • Juwon Lee, Youngjin Han, Wenyu Wang, HyunA Jo, Heeyeon Kim, Soochi Kim, Kyung-Min Yang, Seong-Jin Kim, Danny N Dhanasekaran, Yong Sang Song. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules. 2021 07; 11(8):. doi: 10.3390/biom11081107. [PMID: 34439774]
  • Jessica Gasparello, Elisabetta D'Aversa, Chiara Papi, Laura Gambari, Brunella Grigolo, Monica Borgatti, Alessia Finotti, Roberto Gambari. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jul; 87(?):153583. doi: 10.1016/j.phymed.2021.153583. [PMID: 34033999]
  • Sicong Tian, Peng Lei, Jing Zhang, Yao Sun, Baolong Li, Yujuan Shan. Sulforaphane Balances Ca2+ Homeostasis Injured by Excessive Fat via Mitochondria-Associated Membrane (MAM). Molecular nutrition & food research. 2021 07; 65(14):e2001076. doi: 10.1002/mnfr.202001076. [PMID: 33929090]
  • Francis González, Julián Quintero, Rodrigo Del Río, Andrea Mahn. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli (Brassica oleracea var. italica). Molecules (Basel, Switzerland). 2021 Jul; 26(13):. doi: 10.3390/molecules26134042. [PMID: 34279379]
  • Nivedita Banerjee, Hui Wang, Gangduo Wang, Paul J Boor, M Firoze Khan. Redox-sensitive Nrf2 and MAPK signaling pathways contribute to trichloroethene-mediated autoimmune disease progression. Toxicology. 2021 06; 457(?):152804. doi: 10.1016/j.tox.2021.152804. [PMID: 33930529]
  • Wu Yuanfeng, Lv Chengzhi, Zou Ligen, Sun Juan, Song Xinjie, Zhang Yao, Mao Jianwei. Approaches for enhancing the stability and formation of sulforaphane. Food chemistry. 2021 May; 345(?):128771. doi: 10.1016/j.foodchem.2020.128771. [PMID: 33601652]
  • Kaili Du, Yuxin Fan, Dan Li. Sulforaphane ameliorates lipid profile in rodents: an updated systematic review and meta-analysis. Scientific reports. 2021 04; 11(1):7804. doi: 10.1038/s41598-021-87367-9. [PMID: 33833347]
  • Jamal Valipour, Maryam Shabani Nashtaei, Zahra Khosravizadeh, Forough Mahdavinezhad, Saeid Nekoonam, Sahar Esfandyari, Fardin Amidi. Effect of sulforaphane on apoptosis, reactive oxygen species and lipids peroxidation of human sperm during cryopreservation. Cryobiology. 2021 04; 99(?):122-130. doi: 10.1016/j.cryobiol.2020.11.012. [PMID: 33248050]
  • Flávia Bittencourt Brasil, Rênata Cristina Bertolini Gobbo, Fhelipe Jolner Souza de Almeida, Matheus Dargesso Luckachaki, Fernanda Dos Santos Petry, Marcos Roberto de Oliveira. The Isothiocyanate Sulforaphane Depends on the Nrf2/γ-GCL/GSH Axis to Prevent Mitochondrial Dysfunction in Cells Exposed to Methylglyoxal. Neurochemical research. 2021 Apr; 46(4):740-754. doi: 10.1007/s11064-020-03204-x. [PMID: 33392911]
  • Sonam Sinha, Sonal Sharma, Abhilasha Sharma, Jaykant Vora, Neeta Shrivastava. Sulforaphane-cisplatin combination inhibits the stemness and metastatic potential of TNBCs via down regulation of sirtuins-mediated EMT signaling axis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153492. doi: 10.1016/j.phymed.2021.153492. [PMID: 33640782]
  • Salah Abukhabta, Sameer Khalil Ghawi, Kimon Andreas Karatzas, Dimitris Charalampopoulos, Gordon McDougall, J Will Allwood, Susan Verrall, Siobhan Lavery, Cheryl Latimer, L Kirsty Pourshahidi, Roger Lawther, Gloria O'Connor, Ian Rowland, Chris I R Gill. Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane. European journal of nutrition. 2021 Apr; 60(3):1263-1276. doi: 10.1007/s00394-020-02322-0. [PMID: 32651764]
  • Kenji Hashimoto. Risk of neuropsychiatric disorders in offspring of COVID-19-infected pregnant women and nutritional intervention. European archives of psychiatry and clinical neuroscience. 2021 Mar; 271(2):387-389. doi: 10.1007/s00406-020-01148-5. [PMID: 32488522]
  • Koji Ishida, Kosuke Kaji, Shinya Sato, Hiroyuki Ogawa, Hirotetsu Takagi, Hiroaki Takaya, Hideto Kawaratani, Kei Moriya, Tadashi Namisaki, Takemi Akahane, Hitoshi Yoshiji. Sulforaphane ameliorates ethanol plus carbon tetrachloride-induced liver fibrosis in mice through the Nrf2-mediated antioxidant response and acetaldehyde metabolization with inhibition of the LPS/TLR4 signaling pathway. The Journal of nutritional biochemistry. 2021 03; 89(?):108573. doi: 10.1016/j.jnutbio.2020.108573. [PMID: 33388347]
  • Scott E Liebman, Thu H Le. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients. 2021 Jan; 13(1):. doi: 10.3390/nu13010266. [PMID: 33477669]
  • Su-Jin Moon, Jooyeon Jhun, Jaeyoon Ryu, Ji Ye Kwon, Se-Young Kim, KyoungAh Jung, Mi-La Cho, Jun-Ki Min. The anti-arthritis effect of sulforaphane, an activator of Nrf2, is associated with inhibition of both B cell differentiation and the production of inflammatory cytokines. PloS one. 2021; 16(2):e0245986. doi: 10.1371/journal.pone.0245986. [PMID: 33592002]
  • Li Zhuang, Kexin Xu, Yinglian Zhu, Fengwu Wang, Junxia Xiao, Liping Guo. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. Food chemistry. 2021 Jan; 334(?):127520. doi: 10.1016/j.foodchem.2020.127520. [PMID: 32693332]
  • Gangduo Wang, Hui Wang, Nivedita Banerjee, M Firoze Khan. Interplay and roles of oxidative stress, toll-like receptor 4 and Nrf2 in trichloroethene-mediated autoimmunity. Toxicology and applied pharmacology. 2020 12; 408(?):115258. doi: 10.1016/j.taap.2020.115258. [PMID: 33007382]
  • Zeng-Chun Wang, Qiang Chen, Jing Wang, Ling-Shan Yu, Liang-Wan Chen. Sulforaphane mitigates LPS-induced neuroinflammation through modulation of Cezanne/NF-κB signalling. Life sciences. 2020 Dec; 262(?):118519. doi: 10.1016/j.lfs.2020.118519. [PMID: 33010279]
  • Lei Wang, Devin Rose, Pingfan Rao, Yue Zhang. Development of Prolamin-Based Composite Nanoparticles for Controlled Release of Sulforaphane. Journal of agricultural and food chemistry. 2020 Nov; 68(46):13083-13092. doi: 10.1021/acs.jafc.9b06970. [PMID: 31834787]
  • Jochen Rutz, Sarah Thaler, Sebastian Maxeiner, Felix K-H Chun, Roman A Blaheta. Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7. International journal of molecular sciences. 2020 Nov; 21(22):. doi: 10.3390/ijms21228724. [PMID: 33218199]
  • Zixuan Liu, Xuying Lv, Erqun Song, Yang Song. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicology and applied pharmacology. 2020 11; 407(?):115241. doi: 10.1016/j.taap.2020.115241. [PMID: 32937103]
  • Bharti Mangla, Yub R Neupane, Archu Singh, Pankaj Kumar, Sadat Shafi, Kanchan Kohli. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane: ex vivo, in vivo and toxicity studies. Nanomedicine (London, England). 2020 11; 15(26):2563-2583. doi: 10.2217/nnm-2020-0277. [PMID: 33079004]
  • Mohammed S Almuhayawi, Hamada AbdElgawad, Soad K Al Jaouni, Samy Selim, Abdelrahim H A Hassan, Galal Khamis. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food chemistry. 2020 Oct; 328(?):127102. doi: 10.1016/j.foodchem.2020.127102. [PMID: 32512468]
  • Long-Teng Zhang, Xiao-Ling Wang, Tian Wang, Jun-Sheng Zhang, Zhu-Qing Huang, Tao Shen, Hong-Xiang Lou, Dong-Mei Ren, Xiao-Ning Wang. Dolabellane and Clerodane Diterpenoids from the Twigs and Leaves of Casearia kurzii. Journal of natural products. 2020 10; 83(10):2817-2830. doi: 10.1021/acs.jnatprod.9b00427. [PMID: 33001650]
  • Osama A Elkashty, Simon D Tran. Broccoli extract increases drug-mediated cytotoxicity towards cancer stem cells of head and neck squamous cell carcinoma. British journal of cancer. 2020 10; 123(9):1395-1403. doi: 10.1038/s41416-020-1025-1. [PMID: 32773768]
  • Yue Lu, Yixian Zhang, Yan Lou, Wenpeng Cui, Lining Miao. Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life sciences. 2020 Oct; 258(?):118153. doi: 10.1016/j.lfs.2020.118153. [PMID: 32738361]
  • Zhuo Li, Hua Guo, Jia Li, Tianjiao Ma, Shanshan Zhou, Zhiguo Zhang, Lining Miao, Lu Cai. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clinical science (London, England : 1979). 2020 09; 134(18):2469-2487. doi: 10.1042/cs20191088. [PMID: 32940670]
  • Geting Wu, Yuanliang Yan, Yangying Zhou, Yumei Duan, Shuangshuang Zeng, Xiang Wang, Wei Lin, Chunlin Ou, Jianhua Zhou, Zhijie Xu. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncology research. 2020 Sep; 28(4):439-446. doi: 10.3727/096504020x15828892654385. [PMID: 32111265]
  • Jae Yun Moon, Da Jeong Kim, Hye Sun Kim. Sulforaphane ameliorates serum starvation-induced muscle atrophy via activation of the Nrf2 pathway in cultured C2C12 cells. Cell biology international. 2020 Sep; 44(9):1831-1839. doi: 10.1002/cbin.11377. [PMID: 32401383]