Theaflavin (BioDeep_00000017384)

   

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


InChI=1/C29H24O12/c30-11-3-17(32)15-8-21(36)28(40-23(15)5-11)10-1-13-14(7-20(35)27(39)25(13)26(38)19(34)2-10)29-22(37)9-16-18(33)4-12(31)6-24(16)41-29/h1-7,21-22,28-33,35-37,39H,8-9H2,(H,34,38)/t21-,22-,28-,29-/m1/s1

化学式: C29H24O12 (564.1268)
中文名称: 茶黄素
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 73.77%

分子结构信息

SMILES: C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=O)C(=C4C(=C3)C(=CC(=C4O)O)C5C(CC6=C(C=C(C=C6O5)O)O)O)O)O
InChI: InChI=1S/C29H24O12/c30-11-3-17(32)15-8-21(36)28(40-23(15)5-11)10-1-13-14(7-20(35)27(39)25(13)26(38)19(34)2-10)29-22(37)9-16-18(33)4-12(31)6-24(16)41-29/h1-7,21-22,28-33,35-37,39H,8-9H2,(H,34,38)/t21-,22-,28-,29-/m1/s1

描述信息

Theaflavin is a biflavonoid that is 3,4,5-trihydroxybenzocyclohepten-6-one which is substituted at positions 1 and 8 by (2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl groups. It is the main red pigment in black tea. It has a role as an antioxidant, a chelator, a plant metabolite, a radiation protective agent and an antibacterial agent. It is a polyphenol and a biflavonoid.
Theaflavine is a natural product found in Vicia faba, Camellia, and other organisms with data available.
Theaflavin (TF) and its derivatives, known collectively as theaflavins, are antioxidant polyphenols that are formed from flavanols in tea leaves during the enzymatic oxidation (called fermentation by the tea trade) of tea leaves (Wikipedia).
A biflavonoid that is 3,4,5-trihydroxybenzocyclohepten-6-one which is substituted at positions 1 and 8 by (2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl groups. It is the main red pigment in black tea.
D064449 - Sequestering Agents > D002614 - Chelating Agents
D020011 - Protective Agents > D000975 - Antioxidants
C26170 - Protective Agent > C275 - Antioxidant
Theaflavin is a suitable natural inhibitor against influenza A (H1N1) neuraminidase.
Theaflavin is a suitable natural inhibitor against influenza A (H1N1) neuraminidase.

同义名列表

32 个代谢物同义名

InChI=1/C29H24O12/c30-11-3-17(32)15-8-21(36)28(40-23(15)5-11)10-1-13-14(7-20(35)27(39)25(13)26(38)19(34)2-10)29-22(37)9-16-18(33)4-12(31)6-24(16)41-29/h1-7,21-22,28-33,35-37,39H,8-9H2,(H,34,38)/t21-,22-,28-,29-/m1/s1; 3,4,5-trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-2-yl]-6H-benzo[7]annulen-6-one; 3,4,5-trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]-6H-benzocyclohepten-6-one; 3,4,6-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]-5H-benzo[7]annulen-5-one; 3,4,5-trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]-6H-benzo[7]annulen-6-one; 3,4,5-trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; 5H-BENZOCYCLOHEPTEN-5-ONE, 1,8-BIS((2R,3R)-3,5,7-TRIHYDROXY-2H-1-BENZOPYRAN-2-YL)-3,4,6-TRIHYDROXY; 1,8-Bis((2R,3R)-3,5,7-trihydroxy-2H-1-benzopyran-2-yl)-3,4,6-trihydroxy-5H-benzocyclohepten-5-one; 3,4,6-Trihydroxy-1,8-bis((2R,3R)-3,5,7-trihydroxychroman-2-yl)-5H-benzo[7]annulen-5-one; 3,4,5-TRIHYDROXY-1,8-BIS((2R,3R)-3,5,7-TRIHYDROXY-2-CHROMANYL)-6-BENZO(7)ANNULENONE; 3,4,6-trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxychroman-2-yl]benzo[7]annulen-5-one; 1,8-bis(3-alpha,5,7-trihydroxy-2-alpha-chromanyl)-5H-benzocyclohepten-5-one; Theaflavin, analytical standard; IPMYMEWFZKHGAX-ZKSIBHASSA-N; IPMYMEWFZKHGAX-ZKSIBHASSA-; Spectrum2_001765; Spectrum4_001488; THEAFLAVINE [MI]; Spectrum3_000698; Spectrum5_000195; (-)-Theaflavin; DivK1c_006392; KBio2_001007; KBio2_006143; KBio2_003575; KBio1_001336; KBio3_001675; theaflavine; Theaflavin; TF; 5H-Benzocyclohepten-5-one, 1,8-bis((2R,3R)-3,5,7-trihydroxy-2H-1-benzopyran-2-yl)-3,4,6-trihydroxy-; 3,4,5-trihydroxy-2,8-bis(3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-2-yl)-6H-benzo[7]annulen-6-one



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

36 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Lin Chen, Jingyi Wang, Yijun Yang, Huajie Wang, Anan Xu, Junhui Ma, Yuefei Wang, Ping Xu. Identifying the temporal contributors and their interactions during dynamic formation of black tea cream. Food chemistry. 2024 Aug; 448(?):139138. doi: 10.1016/j.foodchem.2024.139138. [PMID: 38569407]
  • Yi Fang, Jun Wang, Yu Cao, Wenrui Liu, Lianxiang Duan, Jing Hu, Jinghua Peng. The Antiobesity Effects and Potential Mechanisms of Theaflavins. Journal of medicinal food. 2024 Jan; 27(1):1-11. doi: 10.1089/jmf.2023.k.0180. [PMID: 38060708]
  • Yang Chen, Zhi Wei, Zebu Song, Hao Chang, Yanchen Guo, Yankuo Sun, Heng Wang, Zezhong Zheng, Guihong Zhang. Theaflavin inhibits African swine fever virus replication by disrupting lipid metabolism through activation of the AMPK signaling pathway in virto. Virus research. 2023 09; 334(?):199159. doi: 10.1016/j.virusres.2023.199159. [PMID: 37385349]
  • Li Sun, You Su, Kaiyin Hu, Daxiang Li, Huimin Guo, Zhongwen Xie. Microbial-Transferred Metabolites of Black Tea Theaflavins by Human Gut Microbiota and Their Impact on Antioxidant Capacity. Molecules (Basel, Switzerland). 2023 Aug; 28(15):. doi: 10.3390/molecules28155871. [PMID: 37570841]
  • Kenji Ishimoto, Yuma Konishi, Shuichi Otani, Soya Maeda, Yukio Ago, Nobumasa Hino, Masayuki Suzuki, Shinsaku Nakagawa. Suppressive effect of black tea polyphenol theaflavins in a mouse model of ovalbumin-induced food allergy. Journal of natural medicines. 2023 Jun; 77(3):604-609. doi: 10.1007/s11418-023-01686-x. [PMID: 36854953]
  • Jingzi Chen, Yanchao Zheng, Sihan Gong, Zhigang Zheng, Jing Hu, Lin Ma, Xiankuan Li, Hongjian Yu. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Mar; 114(?):154782. doi: 10.1016/j.phymed.2023.154782. [PMID: 36990009]
  • Jun Wang, Jingjing Jiang, Changyu Zhao, Hongyan Shan, Ziheng Shao, Chun Wang, Jiayun Guan, Zhongwen Xie, Songnan Li. The Protective Effect of Theaflavins on the Kidney of Mice with Type II Diabetes Mellitus. Nutrients. 2022 Dec; 15(1):. doi: 10.3390/nu15010201. [PMID: 36615858]
  • Meng Shi, Yuting Lu, Junling Wu, Zhibing Zheng, Chenghao Lv, Jianhui Ye, Si Qin, Chaoxi Zeng. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. International journal of molecular sciences. 2022 Jul; 23(14):. doi: 10.3390/ijms23147595. [PMID: 35886943]
  • Dong Li, Liang Dong, Jieyuan Li, Shiqi Zhang, Yu Lei, Mengsheng Deng, Jingya Li. Optimization of enzymatic synthesis of theaflavins from potato polyphenol oxidase. Bioprocess and biosystems engineering. 2022 Jun; 45(6):1047-1055. doi: 10.1007/s00449-022-02723-x. [PMID: 35487994]
  • Lingli Sun, Shuai Wen, Qiuhua Li, Xingfei Lai, Ruohong Chen, Zhenbiao Zhang, Junxi Cao, Shili Sun. Theaflavin-3,3'-di-gallate represses prostate cancer by activating the PKCδ/aSMase signaling pathway through a 67 kDa laminin receptor. Food & function. 2022 Apr; 13(8):4421-4431. doi: 10.1039/d1fo04198c. [PMID: 35302141]
  • Takashi Tanaka, Miho Yasumatsu, Mayu Hirotani, Yosuke Matsuo, Na Li, Hong-Tao Zhu, Yoshinori Saito, Kanji Ishimaru, Ying-Jun Zhang. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Food chemistry. 2022 Feb; 370(?):131326. doi: 10.1016/j.foodchem.2021.131326. [PMID: 34656020]
  • Israa M A Mohamed, Haruko Ogawa, Yohei Takeda. In vitro virucidal activity of the theaflavin-concentrated tea extract TY-1 against influenza A virus. Journal of natural medicines. 2022 Jan; 76(1):152-160. doi: 10.1007/s11418-021-01568-0. [PMID: 34550554]
  • Fengfeng Qu, Zeyi Ai, Shuyuan Liu, Haojie Zhang, Yuqiong Chen, Yaomin Wang, Dejiang Ni. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer. Drug delivery. 2021 Dec; 28(1):1737-1747. doi: 10.1080/10717544.2021.1949074. [PMID: 34463173]
  • Xiaqiang Cai, Zenghui Liu, Xu Dong, Ying Wang, Luwei Zhu, Mengli Li, Yan Xu. Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice. Food & function. 2021 Oct; 12(20):9922-9931. doi: 10.1039/d1fo01966j. [PMID: 34492673]
  • Ming-Shao Tsai, Yao-Hsu Yang, Yu-Shih Lin, Geng-He Chang, Cheng-Ming Hsu, Reming-Albert Yeh, Li-Hsin Shu, Yu-Ching Cheng, Hung-Te Liu, Yu-Huei Wu, Yu-Heng Wu, Rou-Chen Shen, Ching-Yuan Wu. GB-2 blocking the interaction between ACE2 and wild type and mutation of spike protein of SARS-CoV-2. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Oct; 142(?):112011. doi: 10.1016/j.biopha.2021.112011. [PMID: 34388530]
  • Ge Jin, Yu-Jie Wang, Menghui Li, Tiehan Li, Wen-Jing Huang, Luqing Li, Wei-Wei Deng, Jingming Ning. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Food chemistry. 2021 Oct; 358(?):129815. doi: 10.1016/j.foodchem.2021.129815. [PMID: 33915424]
  • Mingchun Wen, Yuqing Cui, Cai-Xia Dong, Liang Zhang. Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing. Food research international (Ottawa, Ont.). 2021 10; 148(?):110588. doi: 10.1016/j.foodres.2021.110588. [PMID: 34507733]
  • Yohei Takeda, Kyohei Tamura, Dulamjav Jamsransuren, Sachiko Matsuda, Haruko Ogawa. Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164803. [PMID: 34443390]
  • Zhihao Qu, Ailing Liu, Changwei Liu, Quanquan Tang, Li Zhan, Wenjun Xiao, Jianan Huang, Zhonghua Liu, Sheng Zhang. Theaflavin Promotes Mitochondrial Abundance and Glucose Absorption in Myotubes by Activating the CaMKK2-AMPK Signal Axis via Calcium-Ion Influx. Journal of agricultural and food chemistry. 2021 Jul; 69(29):8144-8159. doi: 10.1021/acs.jafc.1c02892. [PMID: 34260232]
  • Jianfeng Zhan, Houjian Cao, Ting Hu, Junfeng Shen, Weixin Wang, Peng Wu, Guliang Yang, Chi-Tang Ho, Shiming Li. Efficient Preparation of Black Tea Extract (BTE) with the High Content of Theaflavin Mono- and Digallates and the Protective Effects of BTE on CCl4-Induced Rat Liver and Renal Injury. Journal of agricultural and food chemistry. 2021 Jun; 69(21):5938-5947. doi: 10.1021/acs.jafc.1c01851. [PMID: 34003645]
  • Jie Zeng, Zhihui Deng, Yixin Zou, Chang Liu, Hongjuan Fu, Yi Gu, Hui Chang. Theaflavin alleviates oxidative injury and atherosclerosis progress via activating microRNA-24-mediated Nrf2/HO-1 signal. Phytotherapy research : PTR. 2021 Jun; 35(6):3418-3427. doi: 10.1002/ptr.7064. [PMID: 33755271]
  • Eric J O'Neill, Deborah Termini, Alexandria Albano, Evangelia Tsiani. Anti-Cancer Properties of Theaflavins. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26040987. [PMID: 33668434]
  • Muhammad Kashif, Ali Imran, Farhan Saeed, Shahzad Ali Shahid Chatha, Muhammad Umair Arshad. Catechins, theaflavins and ginger freeze-dried extract based functional drink significantly mitigate the hepatic, diabetic and lipid abnormalities in rat model. Cellular and molecular biology (Noisy-le-Grand, France). 2021 Jan; 67(1):132-141. doi: 10.14715/cmb/2021.67.1.20. [PMID: 34817356]
  • Ritwija Bhattacharya, Ranodeep Chatterjee, Abul Kalam Azad Mandal, Aniruddha Mukhopadhyay, Soumalee Basu, Ashok Kumar Giri, Urmi Chatterji, Pritha Bhattacharjee. Theaflavin-Containing Black Tea Extract: A Potential DNA Methyltransferase Inhibitor in Human Colon Cancer Cells and Ehrlich Ascites Carcinoma-Induced Solid Tumors in Mice. Nutrition and cancer. 2021; 73(11-12):2447-2459. doi: 10.1080/01635581.2020.1828943. [PMID: 33030063]
  • Gaoyang Zhang, Jihong Yang, Dandan Cui, Dandan Zhao, Vagner Augusto Benedito, Jian Zhao. Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing. Food research international (Ottawa, Ont.). 2020 11; 137(?):109677. doi: 10.1016/j.foodres.2020.109677. [PMID: 33233254]
  • Zhihao Qu, Changwei Liu, Penghui Li, Wei Xiong, Zhaoyang Zeng, Ailing Liu, Wenjun Xiao, Jianan Huang, Zhonghua Liu, Sheng Zhang. Theaflavin Promotes Myogenic Differentiation by Regulating the Cell Cycle and Surface Mechanical Properties of C2C12 Cells. Journal of agricultural and food chemistry. 2020 Sep; 68(37):9978-9992. doi: 10.1021/acs.jafc.0c03744. [PMID: 32830510]
  • Sara Crotti, Sara D'Aronco, Laura Moracci, Francesco Tisato, Marina Porchia, Luisa Mattoli, Michela Burico, Stella Bedont, Pietro Traldi, Marco Agostini. Evidence of noncovalent complexes in some natural extracts: Ceylon tea and mate extracts. Journal of mass spectrometry : JMS. 2020 Jul; 55(7):e4459. doi: 10.1002/jms.4459. [PMID: 31663260]
  • Jrhau Lung, Yu-Shih Lin, Yao-Hsu Yang, Yu-Lun Chou, Li-Hsin Shu, Yu-Ching Cheng, Hung Te Liu, Ching-Yuan Wu. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of medical virology. 2020 06; 92(6):693-697. doi: 10.1002/jmv.25761. [PMID: 32167173]
  • Neha Sharma, Huong T Phan, Miyuki Chikae, Yuzuru Takamura, Auriane F Azo-Oussou, Mun'delanji C Vestergaard. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator. Journal of the science of food and agriculture. 2020 May; 100(7):3126-3135. doi: 10.1002/jsfa.10347. [PMID: 32086808]
  • Gaoyang Zhang, Jihong Yang, Dandan Cui, Dandan Zhao, Yingying Li, Xiaochun Wan, Jian Zhao. Transcriptome and Metabolic Profiling Unveiled Roles of Peroxidases in Theaflavin Production in Black Tea Processing and Determination of Tea Processing Suitability. Journal of agricultural and food chemistry. 2020 Mar; 68(11):3528-3538. doi: 10.1021/acs.jafc.9b07737. [PMID: 32129069]
  • Wenji Zhang, Ran An, Qiuhua Li, Lingli Sun, Xingfei Lai, Ruohong Chen, Dongli Li, Shili Sun. Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. Journal of agricultural and food chemistry. 2020 Mar; 68(9):2673-2683. doi: 10.1021/acs.jafc.0c00148. [PMID: 32050765]
  • Zhenming Yu, Yinyin Liao, Lanting Zeng, Fang Dong, Naoharu Watanabe, Ziyin Yang. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Food research international (Ottawa, Ont.). 2020 03; 129(?):108842. doi: 10.1016/j.foodres.2019.108842. [PMID: 32036878]
  • Di Wu, Sen Mei, Ran Duan, Fang Geng, Wanxia Wu, Xiang Li, Lei Cheng, Chengtao Wang. How black tea pigment theaflavin dyes chicken eggs: Binding affinity study of theaflavin with ovalbumin. Food chemistry. 2020 Jan; 303(?):125407. doi: 10.1016/j.foodchem.2019.125407. [PMID: 31466032]
  • Kirubananthan Gothandam, Vijayan Siva Ganesan, Thangaraj Ayyasamy, Sundaram Ramalingam. Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin - induced diabetic rats. Redox report : communications in free radical research. 2019 Dec; 24(1):41-50. doi: 10.1080/13510002.2019.1624085. [PMID: 31142215]
  • Shimao Fang, Wen-Jing Huang, Yuming Wei, Meng Tao, Xin Hu, Tiehan Li, Yusef K Kalkhajeh, Wei-Wei Deng, Jingming Ning. Geographical origin traceability of Keemun black tea based on its non-volatile composition combined with chemometrics. Journal of the science of food and agriculture. 2019 Dec; 99(15):6937-6943. doi: 10.1002/jsfa.9982. [PMID: 31414496]
  • Ayuko Kondo, Katsuya Narumi, Keisuke Okuhara, Yuka Takahashi, Ayako Furugen, Masaki Kobayashi, Ken Iseki. Black tea extract and theaflavin derivatives affect the pharmacokinetics of rosuvastatin by modulating organic anion transporting polypeptide (OATP) 2B1 activity. Biopharmaceutics & drug disposition. 2019 Sep; 40(8):302-306. doi: 10.1002/bdd.2202. [PMID: 31400238]
  • Jun Zeng, Gang Du, Xue Shao, Ke-Na Feng, Ying Zeng. Recombinant polyphenol oxidases for production of theaflavins from tea polyphenols. International journal of biological macromolecules. 2019 Aug; 134(?):139-145. doi: 10.1016/j.ijbiomac.2019.04.142. [PMID: 31022487]
  • Yinyin Liao, Zhenming Yu, Xiaoyu Liu, Lanting Zeng, Sihua Cheng, Jianlong Li, Jinchi Tang, Ziyin Yang. Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea ( Camellia sinensis) Leaves. Journal of agricultural and food chemistry. 2019 Jun; 67(24):6716-6724. doi: 10.1021/acs.jafc.9b01854. [PMID: 31135151]
  • Brajesh K Panda, Ashutosh N Chavan, Ashis K Datta. Development of super-atmospheric oxidation chamber for orthodox tea processing and its validation through neural network approach. Journal of the science of food and agriculture. 2019 Jun; 99(8):3752-3760. doi: 10.1002/jsfa.9589. [PMID: 30637754]
  • Phil June Park, Chan-Su Rha, Sung Tae Kim. Theaflavin-Enriched Fraction Stimulates Adipogenesis in Human Subcutaneous Fat Cells. International journal of molecular sciences. 2019 Apr; 20(8):. doi: 10.3390/ijms20082034. [PMID: 31027178]
  • Shaherah Alqahtani, Kelly Welton, Jeffrey P Gius, Suad Elmegerhi, Takamitsu A Kato. The Effect of Green and Black Tea Polyphenols on BRCA2 Deficient Chinese Hamster Cells by Synthetic Lethality through PARP Inhibition. International journal of molecular sciences. 2019 Mar; 20(6):. doi: 10.3390/ijms20061274. [PMID: 30875717]
  • Amel Ben Lagha, Daniel Grenier. Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine. 2019 03; 115(?):64-75. doi: 10.1016/j.cyto.2018.12.009. [PMID: 30640129]
  • Qingyun Tan, Lijiao Peng, Yanyu Huang, Wei Huang, Weibin Bai, Lei Shi, Xiaoling Li, Tianfeng Chen. Structure-Activity Relationship Analysis on Antioxidant and Anticancer Actions of Theaflavins on Human Colon Cancer Cells. Journal of agricultural and food chemistry. 2019 Jan; 67(1):159-170. doi: 10.1021/acs.jafc.8b05369. [PMID: 30474978]
  • Lijun Sun, Michael J Gidley, Fredrick J Warren. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity. Food chemistry. 2018 Aug; 258(?):164-173. doi: 10.1016/j.foodchem.2018.03.017. [PMID: 29655719]
  • Ali Imran, Muhammad Umair Arshad, Muhammad Sajid Arshad, Muhammad Imran, Farhan Saeed, Muhammad Sohaib. Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipids in health and disease. 2018 Jul; 17(1):157. doi: 10.1186/s12944-018-0808-3. [PMID: 30021615]
  • Yong-Quan Xu, Pan-Pan Liu, John Shi, Ying Gao, Qiu-Shuang Wang, Jun-Feng Yin. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food chemistry. 2018 May; 249(?):176-183. doi: 10.1016/j.foodchem.2018.01.019. [PMID: 29407922]
  • Masumi Takemoto, Hiroaki Takemoto. Synthesis of Theaflavins and Their Functions. Molecules (Basel, Switzerland). 2018 Apr; 23(4):. doi: 10.3390/molecules23040918. [PMID: 29659496]
  • Qing-Rong Li, Jia-Ling Luo, Zhong-Hua Zhou, Guang-Ying Wang, Rui Chen, Shi Cheng, Min Wu, Hui Li, He Ni, Hai-Hang Li. Simplified recovery of enzymes and nutrients in sweet potato wastewater and preparing health black tea and theaflavins with scrap tea. Food chemistry. 2018 Apr; 245(?):854-862. doi: 10.1016/j.foodchem.2017.11.095. [PMID: 29287451]
  • Shuwei Zhang, Chun Yang, Emmaneul Idehen, Lei Shi, Lishuang Lv, Shengmin Sang. Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea. Journal of agricultural and food chemistry. 2018 Apr; 66(13):3402-3407. doi: 10.1021/acs.jafc.7b06044. [PMID: 29534564]
  • Chen Yang, Zhengyan Hu, Meiling Lu, Pengliang Li, Junfeng Tan, Mei Chen, Haipeng Lv, Yin Zhu, Yue Zhang, Li Guo, Qunhua Peng, Weidong Dai, Zhi Lin. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food research international (Ottawa, Ont.). 2018 04; 106(?):909-919. doi: 10.1016/j.foodres.2018.01.069. [PMID: 29580004]
  • Chuang Zhang, Claire Li-Chieh Suen, Chao Yang, Siew Young Quek. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food chemistry. 2018 Apr; 244(?):109-119. doi: 10.1016/j.foodchem.2017.09.126. [PMID: 29120758]
  • Shu-Qing Chen, Ze-Shi Wang, Yi-Xiao Ma, Wei Zhang, Jian-Liang Lu, Yue-Rong Liang, Xin-Qiang Zheng. Neuroprotective Effects and Mechanisms of Tea Bioactive Components in Neurodegenerative Diseases. Molecules (Basel, Switzerland). 2018 Feb; 23(3):. doi: 10.3390/molecules23030512. [PMID: 29495349]
  • Florence Malongane, Lyndy J McGaw, Fhatuwani N Mudau. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. Journal of the science of food and agriculture. 2017 Nov; 97(14):4679-4689. doi: 10.1002/jsfa.8472. [PMID: 28585285]
  • Lijun Sun, Michael J Gidley, Frederick J Warren. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular nutrition & food research. 2017 10; 61(10):. doi: 10.1002/mnfr.201700324. [PMID: 28618113]
  • April N Ilacqua, Joshua A Shettler, Kevin M Wernke, Jessah K Skalla, Kyle J McQuade. Theaflavins from black tea affect growth, development, and motility in Dictyostelium discoideum. Biochemical and biophysical research communications. 2017 09; 491(2):449-454. doi: 10.1016/j.bbrc.2017.07.058. [PMID: 28711497]
  • Ilaria Peluso, Mauro Serafini. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. British journal of pharmacology. 2017 06; 174(11):1195-1208. doi: 10.1111/bph.13649. [PMID: 27747873]
  • Masumi Takemoto, Hiroaki Takemoto, Haruka Kouno, Tomomi Soeda, Takamichi Moriya. A Simple, Enzymatic Biotransformation Method Using Fresh Green Tea Leaves Efficiently Generates Theaflavin-Containing Fermentation Water That Has Potent Physiological Functions in Mice and Humans. Biological & pharmaceutical bulletin. 2017 Jun; 40(6):860-866. doi: 10.1248/bpb.b17-00062. [PMID: 28381812]
  • A Ben Lagha, D Grenier. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. Journal of periodontal research. 2017 Jun; 52(3):458-470. doi: 10.1111/jre.12411. [PMID: 27549582]
  • Yosuke Matsuo. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2017; 137(3):347-354. doi: 10.1248/yakushi.16-00207. [PMID: 28250332]
  • Fung Ping Leung, Lai Ming Yung, Ching Yuen Ngai, Wai San Cheang, Xiao Yu Tian, Chi Wai Lau, Yang Zhang, Jian Liu, Zhen Yu Chen, Zhao-Xiang Bian, Xiaoqiang Yao, Yu Huang. Chronic black tea extract consumption improves endothelial function in ovariectomized rats. European journal of nutrition. 2016 Aug; 55(5):1963-72. doi: 10.1007/s00394-015-1012-0. [PMID: 26276555]
  • Masumi Takemoto, Hiroaki Takemoto, Ryoyasu Saijo. Theaflavin Synthesized in a Selective, Domino-Type, One-Pot Enzymatic Biotransformation Method with Camellia sinensis Cell Culture Inhibits Weight Gain and Fat Accumulation to High-Fat Diet-Induced Obese Mice. Biological & pharmaceutical bulletin. 2016 Aug; 39(8):1347-52. doi: 10.1248/bpb.b16-00284. [PMID: 27237789]
  • Akiko Saito, Risa Nakazato, Yoshitomo Suhara, Masahiro Shibata, Toshiki Fukui, Takeshi Ishii, Toshimichi Asanuma, Kazuo Mochizuki, Tsutomu Nakayama, Naomi Osakabe. The impact of theaflavins on systemic-and microcirculation alterations: The murine and randomized feasibility trials. The Journal of nutritional biochemistry. 2016 06; 32(?):107-14. doi: 10.1016/j.jnutbio.2016.01.012. [PMID: 27142743]
  • Beitolah Alipour, Bahram Rashidkhani, Sareh Edalati. Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: A cross-sectional study of Iranian women. Nutrition (Burbank, Los Angeles County, Calif.). 2016 May; 32(5):566-72. doi: 10.1016/j.nut.2015.11.011. [PMID: 26830011]
  • Brajesh Kumar Panda, Ashis Kumar Datta. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment. Journal of food science. 2016 Apr; 81(4):C858-66. doi: 10.1111/1750-3841.13265. [PMID: 26970442]
  • Yeonhee Lee, Zhi Lin, Guocheng Du, Zhuangmei Deng, Haiquan Yang, Wenxiang Bai. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products. Journal of the science of food and agriculture. 2015 Oct; 95(13):2686-92. doi: 10.1002/jsfa.7003. [PMID: 25407933]
  • Monthana Weerawatanakorn, You-Li Lee, Chen-Yu Tsai, Ching-Shu Lai, Xiaochun Wan, Chi-Tang Ho, Shiming Li, Min-Hsiung Pan. Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats. Food & function. 2015 Jun; 6(6):1832-40. doi: 10.1039/c5fo00126a. [PMID: 25927469]
  • Itsuko Fukuda, Shin Nishiumi, Rie Mukai, Ken-ichi Yoshida, Hitoshi Ashida. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers. International journal of food sciences and nutrition. 2015 May; 66(3):300-7. doi: 10.3109/09637486.2014.992007. [PMID: 25582180]
  • Xiaorong Lin, Zhongzheng Chen, Yuanyuan Zhang, Wei Luo, Hao Tang, Baibiao Deng, Jian Deng, Bin Li. Comparative characterisation of green tea and black tea cream: physicochemical and phytochemical nature. Food chemistry. 2015 Apr; 173(?):432-40. doi: 10.1016/j.foodchem.2014.10.048. [PMID: 25466042]
  • Takashi Satoh, Masaki Igarashi, Shogo Yamada, Natsuko Takahashi, Kazuhiro Watanabe. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Journal of ethnopharmacology. 2015 Feb; 161(?):147-55. doi: 10.1016/j.jep.2014.12.009. [PMID: 25523370]
  • Telma Blanca Lombardo Bedran, Marie-Pierre Morin, Denise Palomari Spolidorio, Daniel Grenier. Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and β-Defensin Secretion in Oral Epithelial Cells. PloS one. 2015; 10(11):e0143158. doi: 10.1371/journal.pone.0143158. [PMID: 26581041]
  • Yuko Shimamura, Natsumi Aoki, Yuka Sugiyama, Tsutomu Nakayama, Shuichi Masuda. Screening of tea extract and theaflavins for inhibitory effects on the biological activity and production of staphylococcal enterotoxin A. Journal of food science. 2014 Nov; 79(11):M2294-300. doi: 10.1111/1750-3841.12566. [PMID: 25307624]
  • Ulf W Stodt, Nadine Blauth, Steffi Niemann, Janina Stark, Vikas Pawar, Sujatha Jayaraman, Jan Koek, Ulrich H Engelhardt. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments. Journal of agricultural and food chemistry. 2014 Aug; 62(31):7854-61. doi: 10.1021/jf501591j. [PMID: 25051300]
  • M W Korir, F N Wachira, J K Wanyoko, R M Ngure, R Khalid. The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food chemistry. 2014 Feb; 145(?):145-53. doi: 10.1016/j.foodchem.2013.08.016. [PMID: 24128460]
  • Mario Lorenz. Cellular targets for the beneficial actions of tea polyphenols. The American journal of clinical nutrition. 2013 Dec; 98(6 Suppl):1642S-1650S. doi: 10.3945/ajcn.113.058230. [PMID: 24172299]
  • Yuji Miyata, Shizuka Tamaru, Takashi Tanaka, Kei Tamaya, Toshiro Matsui, Yasuo Nagata, Kazunari Tanaka. Theflavins and theasinensin A derived from fermented tea have antihyperglycemic and hypotriacylglycerolemic effects in KK-A(y) mice and Sprague-Dawley rats. Journal of agricultural and food chemistry. 2013 Oct; 61(39):9366-72. doi: 10.1021/jf400123y. [PMID: 24011231]
  • Jonathan W Betts, David W Wareham, Stephen J Haswell, Stephen M Kelly. Antifungal synergy of theaflavin and epicatechin combinations against Candida albicans. Journal of microbiology and biotechnology. 2013 Sep; 23(9):1322-6. doi: 10.4014/jmb.1303.03010. [PMID: 23711519]
  • Shili Sun, Shunshun Pan, Aiqing Miao, Caijin Ling, Shi Pang, Jinchi Tang, Dong Chen, Chaoyi Zhao. Active extracts of black tea (Camellia Sinensis) induce apoptosis of PC-3 prostate cancer cells via mitochondrial dysfunction. Oncology reports. 2013 Aug; 30(2):763-72. doi: 10.3892/or.2013.2504. [PMID: 23715786]
  • Shizuka Tamaru, Kazuhiro Ohmachi, Yuji Miyata, Takashi Tanaka, Takashi Kubayasi, Yasuo Nagata, Kazunari Tanaka. Hypotriglyceridemic potential of fermented mixed tea made with third-crop green tea leaves and camellia (Camellia japonica) leaves in Sprague-Dawley rats. Journal of agricultural and food chemistry. 2013 Jun; 61(24):5817-23. doi: 10.1021/jf400938h. [PMID: 23705670]
  • Anthony Cantatore, Sade D Randall, Daniel Traum, Sandra D Adams. Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC complementary and alternative medicine. 2013 Jun; 13(?):139. doi: 10.1186/1472-6882-13-139. [PMID: 23777309]
  • Minakshi Mazumdar, Arghya Adhikary, Samik Chakraborty, Shravanti Mukherjee, Argha Manna, Shilpi Saha, Suchismita Mohanty, Amrita Dutta, Pushpak Bhattacharjee, Pallab Ray, Sreya Chattopadhyay, Shuvomoy Banerjee, Juni Chakraborty, Arun K Ray, Gaurisankar Sa, Tanya Das. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis : an international journal on programmed cell death. 2013 May; 18(5):589-604. doi: 10.1007/s10495-013-0803-0. [PMID: 23329180]
  • Gary Williamson. Possible effects of dietary polyphenols on sugar absorption and digestion. Molecular nutrition & food research. 2013 Jan; 57(1):48-57. doi: 10.1002/mnfr.201200511. [PMID: 23180627]
  • Naoki Yuda, Miyuki Tanaka, Manabu Suzuki, Yuzo Asano, Hiroshi Ochi, Keiji Iwatsuki. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. Journal of food science. 2012 Dec; 77(12):H254-61. doi: 10.1111/j.1750-3841.2012.02967.x. [PMID: 23106349]
  • Huadong Chen, Kelly Shurlknight, TinChung Leung, Shengmin Sang. Structural identification of theaflavin trigallate and tetragallate from black tea using liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of agricultural and food chemistry. 2012 Oct; 60(43):10850-7. doi: 10.1021/jf303749z. [PMID: 23066878]
  • Mian Zu, Fan Yang, Weiling Zhou, Ailin Liu, Guanhua Du, Lishu Zheng. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral research. 2012 Jun; 94(3):217-24. doi: 10.1016/j.antiviral.2012.04.001. [PMID: 22521753]
  • Sung Hee Ryou, Min Sook Kang, Kyu Il Kim, Young Hee Kang, Jung Sook Kang. Effects of green tea or Sasa quelpaertensis bamboo leaves on plasma and liver lipids, erythrocyte Na efflux, and platelet aggregation in ovariectomized rats. Nutrition research and practice. 2012 Apr; 6(2):106-12. doi: 10.4162/nrp.2012.6.2.106. [PMID: 22586498]
  • Taskeen Mujtaba, Q Ping Dou. Black tea polyphenols inhibit tumor proteasome activity. In vivo (Athens, Greece). 2012 Mar; 26(2):197-202. doi: ". [PMID: 22351658]
  • Jie Yang, Lin Li, Suiyi Tan, Hong Jin, Jiayin Qiu, Qinchao Mao, Runming Li, Chenglai Xia, Zhi-Hong Jiang, Shibo Jiang, Shuwen Liu. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia. 2012 Mar; 83(2):348-55. doi: 10.1016/j.fitote.2011.11.016. [PMID: 22155187]
  • Suchismita Mohanty, Arghya Adhikary, Samik Chakrabarty, Gaurisankar Sa, Tanya Das. Operation 'p53 Hunt' to combat cancer: theaflavins in action. Frontiers in bioscience (Scholar edition). 2012 01; 4(1):300-20. doi: 10.2741/270. [PMID: 22202062]
  • M P Almajano, I Vila, S Gines. Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotoxicity research. 2011 Nov; 20(4):372-8. doi: 10.1007/s12640-011-9252-0. [PMID: 21698507]
  • Chien-Wei Hou. Pu-Erh tea and GABA attenuates oxidative stress in kainic acid-induced status epilepticus. Journal of biomedical science. 2011 Oct; 18(?):75. doi: 10.1186/1423-0127-18-75. [PMID: 22014163]
  • Huadong Chen, Tiffany A Parks, Xiaoxin Chen, Nicholas D Gillitt, Christian Jobin, Shengmin Sang. Structural identification of mouse fecal metabolites of theaflavin 3,3'-digallate using liquid chromatography tandem mass spectrometry. Journal of chromatography. A. 2011 Oct; 1218(41):7297-306. doi: 10.1016/j.chroma.2011.08.056. [PMID: 21906744]
  • Young-A Song, Young-Lan Park, Kyu-Yeol Kim, Cho-Yun Chung, Gi-Hoon Lee, Dae-Ho Cho, Ho-Seok Ki, Kang-Jin Park, Sung-Bum Cho, Wan-Sik Lee, Nacksung Kim, Bong-Whan Ahn, Young-Eun Joo. Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis. BMC complementary and alternative medicine. 2011 Oct; 11(?):91. doi: 10.1186/1472-6882-11-91. [PMID: 21989142]
  • Qiuping Wang, Chunxiu Peng, Jiashun Gong. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. Journal of the science of food and agriculture. 2011 Oct; 91(13):2412-8. doi: 10.1002/jsfa.4480. [PMID: 21656777]
  • K Satyavani, S Gurudeeban, T Ramanathan, T Balasubramanian. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of nanobiotechnology. 2011 Sep; 9(?):43. doi: 10.1186/1477-3155-9-43. [PMID: 21943321]
  • Shengmin Sang, Joshua D Lambert, Chi-Tang Ho, Chung S Yang. The chemistry and biotransformation of tea constituents. Pharmacological research. 2011 Aug; 64(2):87-99. doi: 10.1016/j.phrs.2011.02.007. [PMID: 21371557]
  • Biplab Adhikary, Sudhir K Yadav, Saswati Chand, Sandip K Bandyopadhyay, Subrata Chattopadhyay. Black tea and theaflavins suppress various inflammatory modulators and i-NOS mediated nitric oxide synthesis during gastric ulcer healing. Free radical research. 2011 Jul; 45(7):767-78. doi: 10.3109/10715762.2011.579119. [PMID: 21545263]
  • Akiko Ohno, Kitaro Oka, Chiseko Sakuma, Haruhiro Okuda, Kiyoshi Fukuhara. Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics. Journal of agricultural and food chemistry. 2011 May; 59(10):5181-7. doi: 10.1021/jf200204y. [PMID: 21456619]
  • Peiyuan F Hsieh, Chien-Wei Hou, Pei-Wun Yao, Szu-Pei Wu, Yu-Fen Peng, Mei-Lin Shen, Ching-Huei Lin, Ya-Yun Chao, Ming-Hong Chang, Kee-Ching Jeng. Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation. Journal of neuroinflammation. 2011 May; 8(?):57. doi: 10.1186/1742-2094-8-57. [PMID: 21609430]
  • Timothy W Sirk, Mendel Friedman, Eugene F Brown. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. Journal of agricultural and food chemistry. 2011 Apr; 59(8):3780-7. doi: 10.1021/jf2006547. [PMID: 21417313]