alpha-Methyl-4-carboxyphenylglycine (BioDeep_00000172068)

   

human metabolite blood metabolite


代谢物信息卡片


4-(1-amino-1-carboxyethyl)benzoic acid

化学式: C10H11NO4 (209.0688)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C(O)=O)(N)C1=CC=C(C(O)=O)C=C1
InChI: InChI=1S/C10H11NO4/c1-10(11,9(14)15)7-4-2-6(3-5-7)8(12)13/h2-5H,11H2,1H3,(H,12,13)(H,14,15)

描述信息

D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists
(RS)-MCPG (alpha-MCPG) is a competitive and selective group I/group II metabotropic glutamate receptor (mGluR) antagonist. (RS)-MCPG blocks theta-burst stimulation (TBS)-induced shifts in both juvenile and neonatal rat hippocampal neurons[1][2].

同义名列表

8 个代谢物同义名

4-(1-amino-1-carboxyethyl)benzoic acid; alpha-Methyl-4-carboxyphenylglycine; Α-methyl-4-carboxyphenylglycine; 2-Methyl-4-carboxyphenylglycine; a-Methyl-4-carboxyphenylglycine; alpha-Methyl-cpgly; alpha-MCPG; (RS)-MCPG



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Chiung-Chun Huang, Dylan Chou, Che-Ming Yeh, Kuei-Sen Hsu. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling. Neuropharmacology. 2016 Feb; 101(?):36-45. doi: 10.1016/j.neuropharm.2015.09.018. [PMID: 26384653]
  • Paula A Zamudio-Bulcock, Russell A Morton, C Fernando Valenzuela. Third trimester-equivalent ethanol exposure does not alter complex spikes and climbing fiber long-term depression in cerebellar Purkinje neurons from juvenile rats. Alcoholism, clinical and experimental research. 2014 May; 38(5):1293-300. doi: 10.1111/acer.12362. [PMID: 24689500]
  • Ho Jeong Lee, Hyo Soon Choi, Jin Sook Ju, Yong Chul Bae, Sung Kyo Kim, Young Wook Yoon, Dong Kuk Ahn. Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats. Brain research bulletin. 2006 Oct; 70(4-6):378-85. doi: 10.1016/j.brainresbull.2005.09.021. [PMID: 17027773]
  • Giordano Pula, Stuart J Mundell, Peter J Roberts, Eamonn Kelly. Agonist-independent internalization of metabotropic glutamate receptor 1a is arrestin- and clathrin-dependent and is suppressed by receptor inverse agonists. Journal of neurochemistry. 2004 May; 89(4):1009-20. doi: 10.1111/j.1471-4159.2004.02387.x. [PMID: 15140199]
  • Julie V Selkirk, R A John Challiss, Andrew Rhodes, R A Jeffrey McIlhinney. Characterization of an N-terminal secreted domain of the type-1 human metabotropic glutamate receptor produced by a mammalian cell line. Journal of neurochemistry. 2002 Jan; 80(2):346-53. doi: 10.1046/j.0022-3042.2001.00704.x. [PMID: 11905408]
  • D P Li, D B Averill, H L Pan. Differential roles for glutamate receptor subtypes within commissural NTS in cardiac-sympathetic reflex. American journal of physiology. Regulatory, integrative and comparative physiology. 2001 Sep; 281(3):R935-43. doi: 10.1152/ajpregu.2001.281.3.r935. [PMID: 11507011]
  • M P Johnson, G Kelly, M Chamberlain. Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists. Journal of neuroendocrinology. 2001 Aug; 13(8):670-7. doi: 10.1046/j.1365-2826.2001.00678.x. [PMID: 11489083]
  • D Manahan-Vaughan, M Reiser, J P Pin, V Wilsch, J Bockaert, K G Reymann, G Riedel. Physiological and pharmacological profile of trans-azetidine-2,4-dicarboxylic acid: metabotropic glutamate receptor agonism and effects on long-term potentiation. Neuroscience. 1996 Jun; 72(4):999-1008. doi: 10.1016/0306-4522(95)00594-3. [PMID: 8735225]
  • P A Johansen, L A Chase, A D Sinor, J F Koerner, R L Johnson, M B Robinson. Type 4a metabotropic glutamate receptor: identification of new potent agonists and differentiation from the L-(+)-2-amino-4-phosphonobutanoic acid-sensitive receptor in the lateral perforant pathway in rats. Molecular pharmacology. 1995 Jul; 48(1):140-9. doi: . [PMID: 7623768]
  • G K Hanasono, N V Owen, W R Gibson, D G Hoffman, D M Morton. An evaluation of the toxicity of cefaclor in laboratory animals. Postgraduate medical journal. 1979; 55 Suppl 4(?):17-21. doi: NULL. [PMID: 121454]
  • E Z Rabin, V Weinberger. The isolation, purification, and properties of a ribonuclease from normal human urine. Biochemical medicine. 1975 Sep; 14(1):1-11. doi: 10.1016/0006-2944(75)90014-9. [PMID: 2164]