(E)-4,8-Dimethyl-1,3,7-nonatriene (BioDeep_00000015272)
Main id: BioDeep_00000024191
Volatile Flavor Compounds
代谢物信息卡片
化学式: C11H18 (150.1408428)
中文名称: (E)-4,8-二甲基-1,3,7-壬三烯, (E) -4,8-二甲基-1,3,7-壬三烯
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(=CCCC(=CC=C)C)C
InChI: InChI=1S/C11H18/c1-5-7-11(4)9-6-8-10(2)3/h5,7-8H,1,6,9H2,2-4H3/b11-7+
描述信息
同义名列表
数据库引用编号
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
113 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(2E,6E)-farnesyl diphosphate + H2O ⟶ (3R,6E)-nerolidol + diphosphate
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(110)
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(2E,6E)-farnesyl diphosphate + H2O ⟶ (3R,6E)-nerolidol + diphosphate
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3S,6E)-nerolidol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + an oxidized [NADPH-hemoprotein reductase] + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(2E,6E)-farnesyl diphosphate + H2O ⟶ (3R,6E)-nerolidol + diphosphate
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis I:
(3R,6E)-nerolidol + H+ + NADPH + O2 ⟶ (3E)-4,8-dimethylnona-1,3,7-triene + H2O + NADP+ + but-3-en-2-one
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
- (3E)-4,8-dimethylnona-1,3,7-triene biosynthesis II:
arabidiol ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
3 个相关的物种来源信息
- 76036 - Fallopia sachalinensis: 10.3390/MOLECULES16086481
- 7064 - Popillia japonica: 10.3390/MOLECULES16086481
- 1883 - Streptomyces: 10.1002/CBDV.200590062
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jessica P Yactayo-Chang, Jorrel Mendoza, Steven D Willms, Caitlin C Rering, John J Beck, Anna K Block. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda.
Journal of chemical ecology.
2021 Sep; 47(8-9):799-809. doi:
10.1007/s10886-021-01302-w
. [PMID: 34347233] - Tingting Jing, Wenkai Du, Ting Gao, Yi Wu, Na Zhang, Mingyue Zhao, Jieyang Jin, Jingming Wang, Wilfried Schwab, Xiaochun Wan, Chuankui Song. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants.
Plant, cell & environment.
2021 04; 44(4):1178-1191. doi:
10.1111/pce.13861
. [PMID: 32713005] - Suguru Komatsuzaki, Narisara Piyasaengthong, Shigeru Matsuyama, Yooichi Kainoh. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata.
Journal of chemical ecology.
2021 Mar; 47(3):294-302. doi:
10.1007/s10886-021-01250-5
. [PMID: 33523390] - Chen Chen, Hongyi Chen, Shijie Huang, Taoshan Jiang, Chuanhong Wang, Zhen Tao, Chen He, Qingfeng Tang, Peijin Li. Volatile DMNT directly protects plants against Plutella xylostella by disrupting the peritrophic matrix barrier in insect midgut.
eLife.
2021 02; 10(?):. doi:
10.7554/elife.63938
. [PMID: 33599614] - Yuanxin Wang, Yanhong Liu, Xingchun Wang, Dong Jia, Jun Hu, Ling-Ling Gao, Ruiyan Ma. Agasicles hygrophila attack increases nerolidol synthase gene expression in Alternanthera philoxeroides, facilitating host finding.
Scientific reports.
2020 10; 10(1):16994. doi:
10.1038/s41598-020-73130-z
. [PMID: 33046727] - Anja K Meents, Shi-Peng Chen, Michael Reichelt, Hsueh-Han Lu, Stefan Bartram, Kai-Wun Yeh, Axel Mithöfer. Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants.
Scientific reports.
2019 11; 9(1):17431. doi:
10.1038/s41598-019-53946-0
. [PMID: 31758060] - Reza Sohrabi, Tehane Ali, Liva Harinantenaina Rakotondraibe, Dorothea Tholl. Formation and exudation of non-volatile products of the arabidiol triterpenoid degradation pathway in Arabidopsis roots.
Plant signaling & behavior.
2017 01; 12(1):e1265722. doi:
10.1080/15592324.2016.1265722
. [PMID: 27918234] - Emmanuel O Ogah, Lesley E Smart, Christine M Woodcock, John C Caulfield, Michael A Birkett, John A Pickett, Francis E Nwilene, Toby J Bruce. Electrophysiological and behavioral responses of female African rice gall midge, Orseolia oryzivora Harris and Gagné, to host plant volatiles.
Journal of chemical ecology.
2017 Jan; 43(1):13-16. doi:
10.1007/s10886-016-0788-6
. [PMID: 27815665] - A L Knight, E Basoalto, J Katalin, A M El-Sayed. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).
Environmental entomology.
2015 Oct; 44(5):1434-40. doi:
10.1093/ee/nvv116
. [PMID: 26314018] - Eduardo Hatano, Ahmed M Saveer, Felipe Borrero-Echeverry, Martin Strauch, Ali Zakir, Marie Bengtsson, Rickard Ignell, Peter Anderson, Paul G Becher, Peter Witzgall, Teun Dekker. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways.
BMC biology.
2015 Sep; 13(?):75. doi:
10.1186/s12915-015-0188-3
. [PMID: 26377197] - Reza Sohrabi, Jung-Hyun Huh, Somayesadat Badieyan, Liva Harinantenaina Rakotondraibe, Daniel J Kliebenstein, Pablo Sobrado, Dorothea Tholl. In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots.
The Plant cell.
2015 Mar; 27(3):874-90. doi:
10.1105/tpc.114.132209
. [PMID: 25724638] - John A Pickett, Christine M Woodcock, Charles A O Midega, Zeyaur R Khan. Push-pull farming systems.
Current opinion in biotechnology.
2014 Apr; 26(?):125-32. doi:
10.1016/j.copbio.2013.12.006
. [PMID: 24445079] - Mahabaleshwar Hegde, Janser N Oliveira, Joao G da Costa, Elisa Loza-Reyes, Ervino Bleicher, Antonio E G Santana, John C Caulfield, Patrick Mayon, Sarah Y Dewhirst, Toby J A Bruce, John A Pickett, Michael A Birkett. Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone.
Phytochemistry.
2012 Jun; 78(?):81-8. doi:
10.1016/j.phytochem.2012.03.004
. [PMID: 22516741] - Alan L Knight, Douglas M Light. Monitoring codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards with (E)-4,8-dimethyl-1,3,7-nonatriene or pear ester in combination with codlemone and acetic acid.
Environmental entomology.
2012 Apr; 41(2):407-14. doi:
10.1603/en11310
. [PMID: 22507016] - Sufang Zhang, Jianing Wei, Le Kang. Transcriptional analysis of Arabidopsis thaliana response to lima bean volatiles.
PloS one.
2012; 7(4):e35867. doi:
10.1371/journal.pone.0035867
. [PMID: 22558246] - Amanuel Tamiru, Toby J A Bruce, Christine M Woodcock, John C Caulfield, Charles A O Midega, Callistus K P O Ogol, Patrick Mayon, Michael A Birkett, John A Pickett, Zeyaur R Khan. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore.
Ecology letters.
2011 Nov; 14(11):1075-83. doi:
10.1111/j.1461-0248.2011.01674.x
. [PMID: 21831133] - Dorothea Tholl, Reza Sohrabi, Jung-Hyun Huh, Sungbeom Lee. The biochemistry of homoterpenes--common constituents of floral and herbivore-induced plant volatile bouquets.
Phytochemistry.
2011 Sep; 72(13):1635-46. doi:
10.1016/j.phytochem.2011.01.019
. [PMID: 21334702] - Koji Noge, Makoto Abe, Shigeru Tamogami. Phenylacetonitrile from the giant knotweed, Fallopia sachalinensis, infested by the Japanese beetle, Popillia japonica, is induced by exogenous methyl jasmonate.
Molecules (Basel, Switzerland).
2011 Aug; 16(8):6481-8. doi:
10.3390/molecules16086481
. [PMID: 21814160] - J Daniel Hare, Jia J Sun. Production of induced volatiles by Datura wrightii in response to damage by insects: effect of herbivore species and time.
Journal of chemical ecology.
2011 Jul; 37(7):751-64. doi:
10.1007/s10886-011-9985-5
. [PMID: 21691808] - Shigeru Tamogami, Yukiko Takahashi, Makoto Abe, Koji Noge, Randeep Rakwal, Ganesh Kumar Agrawal. Conversion of airborne nerolidol to DMNT emission requires additional signals in Achyranthes bidentata.
FEBS letters.
2011 Jun; 585(12):1807-13. doi:
10.1016/j.febslet.2011.04.026
. [PMID: 21510937] - Jarmo K Holopainen, Juha Heijari, Elina Oksanen, Giorgio A Alessio. Leaf volatile emissions of Betula pendula during autumn coloration and leaf fall.
Journal of chemical ecology.
2010 Oct; 36(10):1068-75. doi:
10.1007/s10886-010-9857-4
. [PMID: 20838885] - Mohamed A Ibrahim, Maarit Mäenpää, Viivi Hassinen, Sari Kontunen-Soppela, Lukás Malec, Matti Rousi, Liisa Pietikäinen, Arja Tervahauta, Sirpa Kärenlampi, Jarmo K Holopainen, Elina J Oksanen. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.
Journal of experimental botany.
2010 Jun; 61(6):1583-95. doi:
10.1093/jxb/erq034
. [PMID: 20181662] - Mark J Carroll, Eric A Schmelz, Peter E A Teal. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin.
Journal of chemical ecology.
2008 Mar; 34(3):291-300. doi:
10.1007/s10886-007-9414-y
. [PMID: 18256881] - Eric A Schmelz, Sherry LeClere, Mark J Carroll, Hans T Alborn, Peter E A Teal. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory.
Plant physiology.
2007 Jun; 144(2):793-805. doi:
10.1104/pp.107.097154
. [PMID: 17369425] - Zeng-Guang Yan, Chen-Zhu Wang. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize.
Phytochemistry.
2006 Jan; 67(1):34-42. doi:
10.1016/j.phytochem.2005.10.005
. [PMID: 16310233] - Iris F Kappers, Asaph Aharoni, Teun W J M van Herpen, Ludo L P Luckerhoff, Marcel Dicke, Harro J Bouwmeester. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis.
Science (New York, N.Y.).
2005 Sep; 309(5743):2070-2. doi:
10.1126/science.1116232
. [PMID: 16179482] - Yasuyuki Choh, Takeshi Shimoda, Rika Ozawa, Marcel Dicke, Junji Takabayashi. Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?.
Journal of chemical ecology.
2004 Jul; 30(7):1305-17. doi:
10.1023/b:joec.0000037741.13402.19
. [PMID: 15503521] - J Engelberth. Differential signalling and plant-volatile biosynthesis.
Biochemical Society transactions.
2000 Dec; 28(6):871-2. doi:
10.1042/bst0280871
. [PMID: 11171239] - J Degenhardt, J Gershenzon. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis.
Planta.
2000 Apr; 210(5):815-22. doi:
10.1007/s004250050684
. [PMID: 10805454]