9-cis-Retinal (BioDeep_00000014552)
Secondary id: BioDeep_00001873867
human metabolite Endogenous
代谢物信息卡片
化学式: C20H28O (284.214)
中文名称: 9-顺式视黄醛
谱图信息:
最多检出来源 Homo sapiens(otcml) 21.9%
分子结构信息
SMILES: C/C(/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C\C=O
InChI: InChI=1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8-,17-13+
描述信息
In vivo, 9-cis-retinal is formed through oxidation of 9-cis-retinol by cis-retinol dehydrogenase (cRDH). (PMID:15572038). The generation of retinoic acid from retinol is a two-step reaction, with the rate-limiting step being the oxidation of retinol into the intermediate retinaldehyde. Two classes of. unrelated enzymes have been implicated in the oxidation of retinol, the classical cytosolic medium chain alcohol dehydrogenases and recently identified microsomal members of the short chain alcohol dehydrogenase reductase (SDR) superfamily. Further oxidation of the retinaldehyde to the retinoic acid is believed to be catalyzed by several cytosolic aldehyde dehydrogenases. Retinoids are micronutrients required to maintain and promote health of vertebrates. They act physiologically by participating in the visual cycle, in regulating cell differentiation, in embryonic development (PMID:10893430), in maintaining normal reproduction, and in the immune response (PMID:8882153). In non-ocular tissues, the effects of retinoids within the body are mediated through retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which act to regulate gene expression as ligand-dependent transcription factors. The naturally occurring ligands for these nuclear receptors are thought to be all-trans-retinoic acid for RARs and 9-cis-retinoic acid for RXRs (PMID:10322133). While many details of the molecular actions of the RARs and RXRs in regulating gene transcription are understood (PMID:10418975), tissue-specific synthetic pathway(s) of their ligands has not been adequately defined. Nevertheless, the therapeutic efficacy of retinoids, including 9-cis-retinoic acid, is well established in both tissue culture and animal models of breast cancer (PMID:8825126, PMID:12743994).
In vivo, 9-cis-retinal is formed through oxidation of 9-cis-retinol by cis-retinol dehydrogenase (cRDH). (PMID: 15572038). The generation of retinoic acid from retinol is a two-step reaction, with the rate-limiting step being the oxidation of retinol into the intermediate retinaldehyde. Two classes of
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
10 个代谢物同义名
(2E,4E,6Z,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal; 9-cis-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraenal; 9-cis-7,11,13-trans-Retinal; 9-cis-Vitamin a aldehyde; 9-cis-Retinaldehyde; (9cis)-Retinal; cis-9-Retinal; Isoretinene a; 9-cis-Retinal; 9-C-Retinal
数据库引用编号
14 个数据库交叉引用编号
- ChEBI: CHEBI:78273
- KEGG: C16681
- PubChem: 6436082
- HMDB: HMDB0006218
- Metlin: METLIN41512
- ChEMBL: CHEMBL257381
- LipidMAPS: LMPR01090017
- MetaCyc: CPD-13536
- foodb: FDB023842
- chemspider: 4940758
- CAS: 514-85-2
- PubChem: 51091004
- NIKKAJI: J121.827A
- RefMet: 9-cis-Retinal
分类词条
相关代谢途径
Reactome(4)
BioCyc(0)
PlantCyc(0)
代谢反应
59 个相关的代谢反应过程信息。
Reactome(48)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ A0A310SUH5 + ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q5U4Z0
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
E2QW22 + E2RPT1 + ESR1:ER:PGR:P4 + F6UTY3 + J9P0C0 ⟶ ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + F8W2D1 + HSP90:HSP90 + Pi + Q7SZQ8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
E9QD41 + atRA ⟶ SUMO-CRABP1:atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
CRABP1 + atRA ⟶ SUMO-CRABP1:atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
BioCyc(0)
WikiPathways(2)
- Retinol metabolism:
beta-Carotene ⟶ all-trans-retinal
- Vitamin A and carotenoid metabolism:
Betacarotene ⟶ all-trans Retinal
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(9)
- Vitamin A Deficiency:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Yuanyuan Chen, Yu Chen, Beata Jastrzebska, Marcin Golczak, Sahil Gulati, Hong Tang, William Seibel, Xiaoyu Li, Hui Jin, Yong Han, Songqi Gao, Jianye Zhang, Xujie Liu, Hossein Heidari-Torkabadi, Phoebe L Stewart, William E Harte, Gregory P Tochtrop, Krzysztof Palczewski. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
Nature communications.
2018 05; 9(1):1976. doi:
10.1038/s41467-018-04261-1
. [PMID: 29773803] - Songqi Gao, Shirin Kahremany, Jianye Zhang, Beata Jastrzebska, Janice Querubin, Simon M Petersen-Jones, Krzysztof Palczewski. Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells in Blind Mice and Dogs.
Molecular pharmacology.
2018 05; 93(5):438-452. doi:
10.1124/mol.117.111294
. [PMID: 29453250] - Y Kanan, W C Gordon, P K Mukherjee, N G Bazan, M R Al-Ubaidi. Neuroprotectin D1 is synthesized in the cone photoreceptor cell line 661W and elicits protection against light-induced stress.
Cellular and molecular neurobiology.
2015 Mar; 35(2):197-204. doi:
10.1007/s10571-014-0111-4
. [PMID: 25212825] - Elyse K Paterson, Hsiang Ho, Rubina Kapadia, Anand K Ganesan. 9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis.
Experimental dermatology.
2013 Mar; 22(3):202-9. doi:
10.1111/exd.12099
. [PMID: 23489423] - Song-Qi Gao, Tadao Maeda, Kiichiro Okano, Krzysztof Palczewski. A microparticle/hydrogel combination drug-delivery system for sustained release of retinoids.
Investigative ophthalmology & visual science.
2012 Sep; 53(10):6314-23. doi:
10.1167/iovs.12-10279
. [PMID: 22918645] - John C Saari, Maria Nawrot, Ronald E Stenkamp, David C Teller, Gregory G Garwin. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids.
Molecular vision.
2009; 15(?):844-54. doi:
NULL
. [PMID: 19390642] - Peirong Hu, Min Zhang, Joseph L Napoli. Ontogeny of rdh9 (Crad3) expression: ablation causes changes in retinoid and steroid metabolizing enzymes, but RXR and androgen signaling seem normal.
Biochimica et biophysica acta.
2007 Apr; 1770(4):694-705. doi:
10.1016/j.bbagen.2006.12.008
. [PMID: 17270348] - Quanhua He, Dmitriy Alexeev, Maureen E Estevez, Sarah L McCabe, Peter D Calvert, David E Ong, M Carter Cornwall, Anita L Zimmerman, Clint L Makino. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
The Journal of general physiology.
2006 Oct; 128(4):473-85. doi:
10.1085/jgp.200609619
. [PMID: 17001087] - Sara Sebnem Kilic, Esra Yapici Kezer, Yesim Ozarda Ilcol, Tahsin Yakut, Sami Aydin, Ismail Hakki Ulus. Vitamin a deficiency in patients with common variable immunodeficiency.
Journal of clinical immunology.
2005 May; 25(3):275-80. doi:
10.1007/s10875-005-4090-6
. [PMID: 15981093] - Yoshikazu Imanishi, Matthew L Batten, David W Piston, Wolfgang Baehr, Krzysztof Palczewski. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye.
The Journal of cell biology.
2004 Feb; 164(3):373-83. doi:
10.1083/jcb.200311079
. [PMID: 14745001] - Helene Brodeur, Isabelle Gagnon, Sylvie Mader, Pangala V Bhat. Cloning of monkey RALDH1 and characterization of retinoid metabolism in monkey kidney proximal tubule cells.
Journal of lipid research.
2003 Feb; 44(2):303-13. doi:
10.1194/jlr.m200359-jlr200
. [PMID: 12576512] - Richard S Saliba, Peter M G Munro, Philip J Luthert, Michael E Cheetham. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
Journal of cell science.
2002 Jul; 115(Pt 14):2907-18. doi:
10.1242/jcs.115.14.2907
. [PMID: 12082151] - Veronique Montplaisir, Nathaly Chow Lan, Julie Guimond, Céline Savineau, Pangala V Bhat, Sylvie Mader. Recombinant class I aldehyde dehydrogenases specific for all-trans- or 9-cis-retinal.
The Journal of biological chemistry.
2002 May; 277(20):17486-92. doi:
10.1074/jbc.m112445200
. [PMID: 11882655] - Isabelle Gagnon, Gregg Duester, Pangala V Bhat. Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates.
Biochimica et biophysica acta.
2002 Apr; 1596(1):156-62. doi:
10.1016/s0167-4838(02)00213-3
. [PMID: 11983430] - M Lin, J L Napoli. cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12.
The Journal of biological chemistry.
2000 Dec; 275(51):40106-12. doi:
10.1074/jbc.m008027200
. [PMID: 11007799] - P Shukla, J M Sullivan. Normal and mutant rhodopsin activation measured with the early receptor current in a unicellular expression system.
The Journal of general physiology.
1999 Nov; 114(5):609-36. doi:
10.1085/jgp.114.5.609
. [PMID: 10532961] - H Stecher, O Prezhdo, J Das, R K Crouch, K Palczewski. Isomerization of all-trans-9- and 13-desmethylretinol by retinal pigment epithelial cells.
Biochemistry.
1999 Oct; 38(41):13542-50. doi:
10.1021/bi9913294
. [PMID: 10521261] - Z Li, J Zhuang, D W Corson. Delivery of 9-Cis retinal to photoreceptors from bovine serum albumin.
Photochemistry and photobiology.
1999 Apr; 69(4):500-4. doi:
10.1111/j.1751-1097.1999.tb03319.x
. [PMID: 10212584] - X Chai, Y Zhai, J L Napoli. cDNA cloning and characterization of a cis-retinol/3alpha-hydroxysterol short-chain dehydrogenase.
The Journal of biological chemistry.
1997 Dec; 272(52):33125-31. doi:
10.1074/jbc.272.52.33125
. [PMID: 9407098] - J Labrecque, F Dumas, A Lacroix, P V Bhat. A novel isoenzyme of aldehyde dehydrogenase specifically involved in the biosynthesis of 9-cis and all-trans retinoic acid.
The Biochemical journal.
1995 Jan; 305 ( Pt 2)(?):681-4. doi:
10.1042/bj3050681
. [PMID: 7832787]