Hydroxide (BioDeep_00000014391)
Secondary id: BioDeep_00001868725
human metabolite Endogenous
代谢物信息卡片
化学式: HO- (17.0027396)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: [OH-]
InChI: InChI=1S/H2O/h1H2/p-1
描述信息
In chemistry, hydroxide is the most common name for the diatomic anion OH, consisting of oxygen and hydrogen atoms, usually derived from the dissociation of a base. It is one of the simplest diatomic ions known. Hydroxide ion is a kind of ligand. It donates one pair of electrons, behaving as a Lewis base. Examples include the aluminate ion [Al(OH)4]- and aurate ion [Au(OH)4]-. [HMDB]
In chemistry, hydroxide is the most common name for the diatomic anion OH, consisting of oxygen and hydrogen atoms, usually derived from the dissociation of a base. It is one of the simplest diatomic ions known. Hydroxide ion is a kind of ligand. It donates one pair of electrons, behaving as a Lewis base. Examples include the aluminate ion [Al(OH)4]- and aurate ion [Au(OH)4]-.
同义名列表
21 个代谢物同义名
Hydridooxygenate(1-); Hydroxyl ion (OH1-); Hydroxide ion(1-); Hydroxyl radicals; Oxygen ion (O1-); Hydroxyl radical; Hydroxide anion; Hydroxyl anion; Hydrogen oxide; Hydroxide(1-); HYDROXIDE ion; Water ion(1-); Hydroxy anion; Hydroxyl ion; Hydroxy ion; Oxidanide; Hydroxide; Hydroxyl; Hydroxy; OH(-); OH
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:16234
- KEGG: C01328
- PubChem: 961
- HMDB: HMDB0001039
- DrugBank: DB14522
- Wikipedia: Hydroxide
- MetaCyc: OH
- foodb: FDB022386
- chemspider: 936
- CAS: 14280-30-9
- CAS: 14337-01-0
- PubChem: 4539
- PDB-CCD: OH
分类词条
相关代谢途径
Reactome(7)
BioCyc(6)
代谢反应
293 个相关的代谢反应过程信息。
Reactome(48)
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cytoprotection by HMOX1:
BV + TPNH ⟶ BIL + TPN
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cytoprotection by HMOX1:
BIL:ALB + O2.- ⟶ ALB + BV
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
BioCyc(20)
- thiocyanate degradation II:
H2O + carbonyl sulfide ⟶ CO2 + hydrogen sulfide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + ammonium ⟶ H+ + a ferrohemoglobin + hydroxylamine
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- respiration (anaerobic)-- electron acceptors reaction list:
nitrite ⟶ ammonia
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(222)
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- olivetol biosynthesis:
H2O + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + OH- + coenzyme A + triketide pyrone
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
H_sub_2_endsub_O_sub_2_endsub_ + glutathione ⟶ H_sub_2_endsub_O + glutathione disulfide
PathBank(2)
- Selenium Metabolism:
Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate
- Selenium Metabolism:
Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Samaneh Torbati, Parisa Yekan Motlagh, Alireza Khataee. Toxicity of ZnFe-SO4 layered double hydroxide in Tetradesmus obliquus and evaluation of some physiological responses of the microalgae for stress management.
Scientific reports.
2024 01; 14(1):975. doi:
10.1038/s41598-023-51042-y
. [PMID: 38200201] - Guoxin Jing, Linnan Yang, Hong Wang, Jintong Niu, Huichao Wang, Yi Gao, Youyuan Li, Bangguo Wei, Yechang Qian, Shilong Wang. Blocked Autophagy is Involved in Layered Double Hydroxide-Induced Repolarization and Immune Activation in Tumor-Associated Macrophages.
Advanced healthcare materials.
2023 12; 12(30):e2301471. doi:
10.1002/adhm.202301471
. [PMID: 37549006] - Hongyang Wu, Xiaoyang Wan, Jiefei Niu, Huimin Xu, Yu Zhang, Xian Xue, Yang Li, Qiang Li, Tao Lu, Hongjun Yu, Weijie Jiang. Enhancing lettuce yield via Cu/Fe-layered double hydroxide nanoparticles spraying.
Journal of nanobiotechnology.
2023 Nov; 21(1):417. doi:
10.1186/s12951-023-02178-6
. [PMID: 37950234] - Caiyou Ding, Jiongxin Wu, Yuan Liu, Xinxin Sheng, Xiaoling Cheng, Xiaoyan Xiong, Wenlin Zhao. A Waterborne Epoxy Composite Coating with Smart Corrosion Resistance Based on 2-Phenylbenzimidazole-5-sulfonic Acid/Layered Double Hydroxide Composite.
Molecules (Basel, Switzerland).
2023 Jul; 28(13):. doi:
10.3390/molecules28135199
. [PMID: 37446859] - Xavier Benadict Joseph, Jeena N Baby, Sea-Fue Wang, Mary George. Emerging carbonate anion intercalated- ZnCr-layered double hydroxide/vanadium carbide nanocomposite: Sustainable design strategies based on disposal electrochemical sensor for diethofencarb fungicide monitoring.
Chemosphere.
2023 Jun; ?(?):139099. doi:
10.1016/j.chemosphere.2023.139099
. [PMID: 37270040] - Javad Shirazi, Sonia Jafari, Ulf Ryde, Mehdi Irani. Catalytic Reaction Mechanism of Glyoxalase II: A Quantum Mechanics/Molecular Mechanics Study.
The journal of physical chemistry. B.
2023 May; 127(20):4480-4495. doi:
10.1021/acs.jpcb.3c01495
. [PMID: 37191640] - Bin Liu, Yanlan Wang, Na Du. Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes.
Molecules (Basel, Switzerland).
2023 May; 28(9):. doi:
10.3390/molecules28093929
. [PMID: 37175337] - Haohao Bian, Minyan Wang, Jialin Han, Xiaopiao Hu, Honglei Xia, Lei Wang, Chaochu Fang, Cheng Shen, Yu Bon Man, Ming Hung Wong, Shengdao Shan, Jin Zhang. MgFe-LDH@biochars for removing ammonia nitrogen and phosphorus from biogas slurry: Synthesis routes, composite performance, and adsorption mechanisms.
Chemosphere.
2023 May; 324(?):138333. doi:
10.1016/j.chemosphere.2023.138333
. [PMID: 36889475] - Jiaxi Yong, Miaomiao Wu, Run Zhang, Shengnan Bi, Christopher W G Mann, Neena Mitter, Bernard J Carroll, Zhi Ping Xu. Clay nanoparticles efficiently deliver small interfering RNA to intact plant leaf cells.
Plant physiology.
2022 11; 190(4):2187-2202. doi:
10.1093/plphys/kiac430
. [PMID: 36135825] - Wenxian Gou, Wei Li, Matthew G Siebecker, Mengqiang Zhu, Ling Li, Donald L Sparks. Coupling Molecular-Scale Spectroscopy with Stable Isotope Analyses to Investigate the Effect of Si on the Mechanisms of Zn-Al LDH Formation on Al Oxide.
Environmental science & technology.
2022 10; 56(19):13829-13836. doi:
10.1021/acs.est.2c05140
. [PMID: 36135962] - Chieh-Tsung Lo, Yi-Shan Wu, Sheng-Min Huang, Pei-Jung Tsai, Chien-Liang Lee. Carbon fibre-supported hierarchical NiCo layered double hydroxide nanosheets as non-enzymatic glucose sensors for sport drinks and serum.
Food chemistry.
2022 Jul; 383(?):132383. doi:
10.1016/j.foodchem.2022.132383
. [PMID: 35176717] - Luyao Zhang, Gaoming Li, Zhijun Ouyang, Rui Yang, Yue Gao, Xueyan Cao, István Bányai, Xiangyang Shi, Rui Guo. Intelligent design of iron-doped LDH nanosheets for cooperative chemo-chemodynamic therapy of tumors.
Biomaterials science.
2022 Apr; 10(8):2029-2039. doi:
10.1039/d2bm00102k
. [PMID: 35302125] - Samina Rubnawaz, Waqas Khan Kayani, Nosheen Akhtar, Rashid Mahmood, Asif Khan, Mohammad K Okla, Saud A Alamri, Ibrahim A Alaraidh, Yasmeen A Alwasel, Bushra Mirza. Polyphenol Rich Ajuga bracteosa Transgenic Regenerants Display Better Pharmacological Potential.
Molecules (Basel, Switzerland).
2021 08; 26(16):. doi:
10.3390/molecules26164874
. [PMID: 34443462] - S Taniselass, Mohd Khairuddin Md Arshad, Subash C B Gopinath, M F M Fathil, C Ibau, Periasamy Anbu. Impedimetric cardiac biomarker determination in serum mediated by epoxy and hydroxyl of reduced graphene oxide on gold array microelectrodes.
Mikrochimica acta.
2021 07; 188(8):257. doi:
10.1007/s00604-021-04922-x
. [PMID: 34268634] - Ahmed A G El-Shahawy, Adel Abdel-Moneim, Abdelazim S M Ebeid, Zienab E Eldin, Mohamed I Zanaty. A novel layered double hydroxide-hesperidin nanoparticles exert antidiabetic, antioxidant and anti-inflammatory effects in rats with diabetes.
Molecular biology reports.
2021 Jun; 48(6):5217-5232. doi:
10.1007/s11033-021-06527-2
. [PMID: 34244888] - Junichi Ono, Minori Imai, Yoshifumi Nishimura, Hiromi Nakai. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer.
The journal of physical chemistry. B.
2020 10; 124(39):8524-8539. doi:
10.1021/acs.jpcb.0c05507
. [PMID: 32877195] - Lu Zhang, Wen-Na Zhou, Zong-Cai Tu, Si-Hang Yang, Liang Xu, Tao Yuan. Influence of Hydroxyl Substitution on the Suppression of Flavonol in Harmful Glycation Product Formation and the Inhibition Mechanism Revealed by Spectroscopy and Mass Spectrometry.
Journal of agricultural and food chemistry.
2020 Aug; 68(31):8263-8273. doi:
10.1021/acs.jafc.0c03163
. [PMID: 32662984] - Rubén Seoane-Rivero, Estibaliz Ruiz-Bilbao, Rodrigo Navarro, José Manuel Laza, José María Cuevas, Beñat Artetxe, Juan M Gutiérrez-Zorrilla, José Luis Vilas-Vilela, Ángel Marcos-Fernandez. Structural Characterization of Mono and Dihydroxylated Umbelliferone Derivatives.
Molecules (Basel, Switzerland).
2020 Jul; 25(15):. doi:
10.3390/molecules25153497
. [PMID: 32751979] - Cecilia Vasti, Ernesto Ambroggio, Ricardo Rojas, Carla E Giacomelli. A closer look into the physical interactions between lipid membranes and layered double hydroxide nanoparticles.
Colloids and surfaces. B, Biointerfaces.
2020 Jul; 191(?):110998. doi:
10.1016/j.colsurfb.2020.110998
. [PMID: 32244154] - Justin Phillips, Jaco-Louis Venter, Maria Atanasova, James Wesley-Smith, Hester Oosthuizen, M Naushad Emmambux, Elizabeth L Du Toit, Walter W Focke. Dextrin Nanocomposites as Matrices for Solid Dosage Forms.
ACS applied materials & interfaces.
2020 Apr; 12(14):16969-16977. doi:
10.1021/acsami.0c02061
. [PMID: 32191427] - Yang Yu, Guido F Pauli, Lingyi Huang, Li-She Gan, Richard B van Breemen, Dianpeng Li, James B McAlpine, David C Lankin, Shao-Nong Chen. Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals.
Analytical chemistry.
2020 04; 92(7):4954-4962. doi:
10.1021/acs.analchem.9b05084
. [PMID: 32108467] - Peter Olsén, Natalia Herrera, Lars A Berglund. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling.
Biomacromolecules.
2020 02; 21(2):597-603. doi:
10.1021/acs.biomac.9b01333
. [PMID: 31769663] - Yulin Xiang, Furen Kang, Yuxiu Xiang, Yurong Jiao. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability.
Ecotoxicology and environmental safety.
2019 Oct; 182(?):109424. doi:
10.1016/j.ecoenv.2019.109424
. [PMID: 31299478] - Shafinaz Abd Gani, Suleiman Alhaji Muhammad, Aminu Umar Kura, Farahnaz Barahuie, Mohd Zobir Hussein, Sharida Fakurazi. Effect of protocatechuic acid-layered double hydroxide nanoparticles on diethylnitrosamine/phenobarbital-induced hepatocellular carcinoma in mice.
PloS one.
2019; 14(5):e0217009. doi:
10.1371/journal.pone.0217009
. [PMID: 31141523] - Gao-Juan Cao, Yingmei Chen, Xiaohe Chen, Peilin Weng, Rong-Guang Lin. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity.
Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.
2019; 37(1):14-25. doi:
10.1080/10590501.2019.1555319
. [PMID: 30601677] - Poonam Subhash Jaiswal, Nishu Mittal, Gursharn Singh Randhawa. Cyamopsis tetragonoloba type 1 metallothionein (CtMT1) gene is upregulated under drought stress and its protein product has an additional C-X-C motif and unique metal binding pattern.
International journal of biological macromolecules.
2018 Nov; 119(?):1324-1334. doi:
10.1016/j.ijbiomac.2018.08.027
. [PMID: 30098366] - Jinzhi Ni, Joseph J Pignatello. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids.
Environmental science. Processes & impacts.
2018 Sep; 20(9):1225-1233. doi:
10.1039/c8em00255j
. [PMID: 30084855] - Tzu-Yen Yang, Mei-Li Wu, Chi-I Chang, Chih-I Liu, Te-Chih Cheng, Yu-Jen Wu. Bornyl cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/mTOR and MAPK Signaling Pathways and Inhibition of the Epithelial-to-Mesenchymal Transition.
International journal of molecular sciences.
2018 Jul; 19(8):. doi:
10.3390/ijms19082152
. [PMID: 30042328] - Marketa Absolonova, Mary J Beilby, Aniela Sommer, Marion C Hoepflinger, Ilse Foissner. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.
Protoplasma.
2018 May; 255(3):851-862. doi:
10.1007/s00709-017-1191-z
. [PMID: 29247277] - Rongrong Zhu, Zhaoqi Wang, Peng Liang, Xiaolie He, Xizhen Zhuang, Ruiqi Huang, Mei Wang, Qigang Wang, Yechang Qian, Shilong Wang. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy.
Acta biomaterialia.
2017 11; 63(?):163-180. doi:
10.1016/j.actbio.2017.09.009
. [PMID: 28923539] - Baowei Hu, Feng Ye, Chengan Jin, Xiangxian Ma, Chengcai Huang, Guodong Sheng, Jingyuan Ma, Xiangke Wang, Yuying Huang. The enhancement roles of layered double hydroxide on the reductive immobilization of selenate by nanoscale zero valent iron: Macroscopic and microscopic approaches.
Chemosphere.
2017 Oct; 184(?):408-416. doi:
10.1016/j.chemosphere.2017.05.179
. [PMID: 28609747] - Burçin Ergene Öz, Gülçin Saltan İşcan, Esra Küpeli Akkol, İpek Süntar, Hikmet Keleş, Özlem Bahadır Acıkara. Wound healing and anti-inflammatory activity of some Ononis taxons.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Jul; 91(?):1096-1105. doi:
10.1016/j.biopha.2017.05.040
. [PMID: 28531920] - Yu-Jun Wang, Ting-Ting Fan, Cun Liu, Wei Li, Meng-Qiang Zhu, Jian-Xin Fan, Hua Gong, Dong-Mei Zhou, Donald L Sparks. Macroscopic and microscopic investigation of adsorption and precipitation of Zn on γ-alumina in the absence and presence of As.
Chemosphere.
2017 Jul; 178(?):309-316. doi:
10.1016/j.chemosphere.2017.03.061
. [PMID: 28340456] - Ling Qiu, Jianguo Lin, Qingzhu Liu, Shanshan Wang, Gaochao Lv, Ke Li, Haiming Shi, Zhengkun Huang, Edward J Bertaccini. The Role of the Hydroxyl Group in Propofol-Protein Target Recognition: Insights from ONIOM Studies.
The journal of physical chemistry. B.
2017 06; 121(24):5883-5896. doi:
10.1021/acs.jpcb.7b02079
. [PMID: 28548837] - Qian Jiang, Xican Li, Yage Tian, Qiaoqi Lin, Hong Xie, Wenbiao Lu, Yuguang Chi, Dongfeng Chen. Lyophilized aqueous extracts of Mori Fructus and Mori Ramulus protect Mesenchymal stem cells from •OH-treated damage: bioassay and antioxidant mechanism.
BMC complementary and alternative medicine.
2017 May; 17(1):242. doi:
10.1186/s12906-017-1730-3
. [PMID: 28464859] - Ieva Vasiliauskaité-Brooks, Remy Sounier, Pascal Rochaix, Gaëtan Bellot, Mathieu Fortier, François Hoh, Luigi De Colibus, Chérine Bechara, Essa M Saied, Christoph Arenz, Cédric Leyrat, Sébastien Granier. Structural insights into adiponectin receptors suggest ceramidase activity.
Nature.
2017 04; 544(7648):120-123. doi:
10.1038/nature21714
. [PMID: 28329765] - Ningning Song, Yibing Ma. The toxicity of HCrO4- and CrO42- to barley root elongation in solution culture: pH effect and modelling.
Chemosphere.
2017 Mar; 171(?):537-543. doi:
10.1016/j.chemosphere.2016.12.050
. [PMID: 28039832] - Mina Yan, Chanzhen Yang, Binyao Huang, Zeqian Huang, Liangfeng Huang, Xuefei Zhang, Chunshun Zhao. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles.
International journal of nanomedicine.
2017; 12(?):7183-7195. doi:
10.2147/ijn.s146414
. [PMID: 29042768] - Roberto Mioni, Alessandra Marega, Marco Lo Cicero, Domenico Montanaro. Old and new approaches to the interpretation of acid-base metabolism, starting from historical data applied to diabetic acidosis.
Scandinavian journal of clinical and laboratory investigation.
2016 Nov; 76(7):520-543. doi:
10.1080/00365513.2016.1204660
. [PMID: 27410514] - Samiyyah M Sledge, Hussain Khimji, Douglas Borchman, Alexandria L Oliver, Heidi Michael, Emily K Dennis, Dylan Gerlach, Rahul Bhola, Elsa Stephen. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films.
The ocular surface.
2016 10; 14(4):447-459. doi:
10.1016/j.jtos.2016.06.002
. [PMID: 27395776] - Hongbo Tang, Shiqi Gao, Yanping Li, Siqing Dong. Modification mechanism of sesbania gum, and preparation, property, adsorption of dialdehyde cross-linked sesbania gum.
Carbohydrate polymers.
2016 Sep; 149(?):151-62. doi:
10.1016/j.carbpol.2016.04.072
. [PMID: 27261740] - Noam Agmon, Huib J Bakker, R Kramer Campen, Richard H Henchman, Peter Pohl, Sylvie Roke, Martin Thämer, Ali Hassanali. Protons and Hydroxide Ions in Aqueous Systems.
Chemical reviews.
2016 07; 116(13):7642-72. doi:
10.1021/acs.chemrev.5b00736
. [PMID: 27314430] - Thomas B H Schroeder, Geoffray Leriche, Takaoki Koyanagi, Mitchell A Johnson, Kathryn N Haengel, Olivia M Eggenberger, Claire L Wang, Young Hun Kim, Karthik Diraviyam, David Sept, Jerry Yang, Michael Mayer. Effects of Lipid Tethering in Extremophile-Inspired Membranes on H(+)/OH(-) Flux at Room Temperature.
Biophysical journal.
2016 06; 110(11):2430-2440. doi:
10.1016/j.bpj.2016.04.044
. [PMID: 27276261] - XueQin Jin, Min Zhang, GuoJing Gou, Jie Ren. Synthesis and Cell Imaging of a Near-Infrared Fluorescent Magnetic 'CdHgTe-Dextran-Magnetic Layered Double Hydroxide-Fluorouracil' Composite.
Journal of pharmaceutical sciences.
2016 05; 105(5):1751-1761. doi:
10.1016/j.xphs.2016.02.030
. [PMID: 27039355] - Goeun Choi, Huiyan Piao, Zeid A Alothman, Ajayan Vinu, Chae-Ok Yun, Jin-Ho Choy. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.
International journal of nanomedicine.
2016; 11(?):337-48. doi:
10.2147/ijn.s95611
. [PMID: 26855572] - Ranjith Kumar Kankala, Yaswanth Kuthati, Huei-Wun Sie, Hung-Yuan Shih, Sheng-I Lue, Shravankumar Kankala, Chien-Chung Jeng, Jin-Pei Deng, Ching-Feng Weng, Chen-Lun Liu, Chia-Hung Lee. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice.
Journal of colloid and interface science.
2015 Nov; 458(?):217-28. doi:
10.1016/j.jcis.2015.07.044
. [PMID: 26225492] - Ese O Siemuri, Jacob K Akintunde, Anuoluwapo J Salemcity. Effects of sub-acute methanol extract treatment of Calliandra portoricensis root bark on antioxidant defence capacity in an experimental rat model.
Journal of basic and clinical physiology and pharmacology.
2015 Jul; 26(4):375-82. doi:
10.1515/jbcpp-2013-0151
. [PMID: 26119059] - Seiya Yonemori, Ryo Ono. Effect of discharge polarity on the propagation of atmospheric-pressure helium plasma jets and the densities of OH, NO, and O radicals.
Biointerphases.
2015 Jun; 10(2):029514. doi:
10.1116/1.4919709
. [PMID: 25934074] - Clemens Vergeiner, Markus Ulrich, Chengjie Li, Xiujun Liu, Thomas Müller, Bernhard Kräutler. Stereo- and regioselective phyllobilane oxidation in leaf homogenates of the peace lily (Spathiphyllum wallisii): hypothetical endogenous path to yellow chlorophyll catabolites.
Chemistry (Weinheim an der Bergstrasse, Germany).
2015 Jan; 21(1):136-49. doi:
10.1002/chem.201404783
. [PMID: 25382809] - Janice E Chambers, Howard W Chambers, Edward C Meek, Kristen E Funck, Manikanthan H Bhavaraju, Steven R Gwaltney, Ronald B Pringle. Novel nucleophiles enhance the human serum paraoxonase 1 (PON1)-mediated detoxication of organophosphates.
Toxicological sciences : an official journal of the Society of Toxicology.
2015 Jan; 143(1):46-53. doi:
10.1093/toxsci/kfu205
. [PMID: 25304213] - Manjula P Mummadisetti, Laurie K Frankel, Henry D Bellamy, Larry Sallans, Jost S Goettert, Michal Brylinski, Patrick A Limbach, Terry M Bricker. Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II.
Proceedings of the National Academy of Sciences of the United States of America.
2014 Nov; 111(45):16178-83. doi:
10.1073/pnas.1415165111
. [PMID: 25349426] - Tanmoy Saha, Sathish Dasari, Debanjan Tewari, Annamalai Prathap, Kana M Sureshan, Amal K Bera, Arnab Mukherjee, Pinaki Talukdar. Hopping-mediated anion transport through a mannitol-based rosette ion channel.
Journal of the American Chemical Society.
2014 Oct; 136(40):14128-35. doi:
10.1021/ja506278z
. [PMID: 25203165] - R Karthikraj, L Sridhar, M R V S Murty, N P Raju, M Vairamani, S Prabhakar. p-Tolyl isocyanate derivatization for analysis of CWC-related polar degradation products by mass spectrometry.
Analytical and bioanalytical chemistry.
2014 Aug; 406(21):5093-102. doi:
10.1007/s00216-014-7624-z
. [PMID: 24553658] - Marcus C Durrant. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes.
Dalton transactions (Cambridge, England : 2003).
2014 Jul; 43(25):9754-65. doi:
10.1039/c4dt01103a
. [PMID: 24846575] - Ragini Sinha, Akshada Joshi, Urmila J Joshi, Sudha Srivastava, Girjesh Govil. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR.
European journal of medicinal chemistry.
2014 Jun; 80(?):285-94. doi:
10.1016/j.ejmech.2014.04.054
. [PMID: 24793879] - Shalini John, Sundarapandian Thangapandian, Prettina Lazar, Minky Son, Chanin Park, Keun Woo Lee. New insights in the activation of human cholesterol esterase to design potent anti-cholesterol drugs.
Molecular diversity.
2014 Feb; 18(1):119-31. doi:
10.1007/s11030-013-9464-8
. [PMID: 24173651] - Alexander G Petrenko, Sergey A Zozulya, Igor E Deyev, Dominique Eladari. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.
Biochimica et biophysica acta.
2013 Oct; 1834(10):2170-5. doi:
10.1016/j.bbapap.2012.11.011
. [PMID: 23220417] - Haoran Cheng, Shiling Feng, Shian Shen, Li Zhang, Ruiwu Yang, Yonghong Zhou, Chunbang Ding. Extraction, antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide.
Carbohydrate polymers.
2013 Jul; 96(1):101-8. doi:
10.1016/j.carbpol.2013.03.072
. [PMID: 23688459] - Igor Pottosin, Ana-María Velarde-Buendía, Isaac Zepeda-Jazo, Oxana Dobrovinskaya, Sergey Shabala. Synergism between polyamines and ROS in the induction of Ca ( 2+) and K (+) fluxes in roots.
Plant signaling & behavior.
2012 Sep; 7(9):1084-7. doi:
10.4161/psb.21185
. [PMID: 22899073] - S M Abdel Azeem, H M Kuss, M F El-Shahat. Cationic polyelectrolyte copolymer modified polyurethane foam for flow injection preconcentration and separation of trace amounts of β-lactam antibiotics.
Talanta.
2012 Aug; 97(?):513-20. doi:
10.1016/j.talanta.2012.05.007
. [PMID: 22841116] - Nan Zhang, Hanyong Peng, Bin Hu. Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection.
Talanta.
2012 May; 94(?):278-83. doi:
10.1016/j.talanta.2012.03.040
. [PMID: 22608448] - Alan Commet, Nicholas Boswell, Charles F Yocum, Hana Popelka. pH optimum of the photosystem II H₂O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl- retention, and deprotonation of a component required for O₂ evolution activity.
Biochemistry.
2012 May; 51(18):3808-18. doi:
10.1021/bi201678m
. [PMID: 22512418] - Robert J Hilton, Bo Zhang, L Naomi Martineau, Gerald D Watt, Richard K Watt. Anion deposition into ferritin.
Journal of inorganic biochemistry.
2012 Mar; 108(?):8-14. doi:
10.1016/j.jinorgbio.2011.12.004
. [PMID: 22265833] - Hiroaki Watanabe, Kensuke Saito, Katsutoshi Kokubun, Hodaka Sasaki, Masao Yoshinari. Change in surface properties of zirconia and initial attachment of osteoblastlike cells with hydrophilic treatment.
Dental materials journal.
2012; 31(5):806-14. doi:
10.4012/dmj.2012-069
. [PMID: 23037844] - Zi Gu, Barbara E Rolfe, Anita C Thomas, Julie H Campbell, G Q Max Lu, Zhi P Xu. Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells.
Biomaterials.
2011 Oct; 32(29):7234-40. doi:
10.1016/j.biomaterials.2011.05.083
. [PMID: 21700332] - Catherine Koukoulitsa, Serdar Durdagi, Eleni Siapi, Carolina Villalonga-Barber, Xanthippi Alexi, Barry R Steele, Maria Micha-Screttas, Michael N Alexis, Anna Tsantili-Kakoulidou, Thomas Mavromoustakos. Comparison of thermal effects of stilbenoid analogs in lipid bilayers using differential scanning calorimetry and molecular dynamics: correlation of thermal effects and topographical position with antioxidant activity.
European biophysics journal : EBJ.
2011 Jul; 40(7):865-75. doi:
10.1007/s00249-011-0705-4
. [PMID: 21553341] - John R Horton, Anup K Upadhyay, Hideharu Hashimoto, Xing Zhang, Xiaodong Cheng. Structural basis for human PHF2 Jumonji domain interaction with metal ions.
Journal of molecular biology.
2011 Feb; 406(1):1-8. doi:
10.1016/j.jmb.2010.12.013
. [PMID: 21167174] - Hilal Türkoğlu Şaşmazel, Sezin Aday, Sorin Manolache, Menemşe Gümüşderelioğlu. Influence of water/O₂ plasma treatment on cellular responses of PCL and PET surfaces.
Bio-medical materials and engineering.
2011; 21(2):123-37. doi:
10.3233/bme-2011-0662
. [PMID: 21654068] - Gabriella Aviello, Jasna M Canadanovic-Brunet, Natasa Milic, Raffaele Capasso, Ernesto Fattorusso, Orazio Taglialatela-Scafati, Ines Fasolino, Angelo A Izzo, Francesca Borrelli. Potent antioxidant and genoprotective effects of boeravinone G, a rotenoid isolated from Boerhaavia diffusa.
PloS one.
2011; 6(5):e19628. doi:
10.1371/journal.pone.0019628
. [PMID: 21625488] - Jun Wang, Jideng Zhou, Zhanshuang Li, Yanchao Song, Qi Liu, Zhaohua Jiang, Milin Zhang. Magnetic, luminescent Eu-doped Mg-Al layered double hydroxide and its intercalation for ibuprofen.
Chemistry (Weinheim an der Bergstrasse, Germany).
2010 Dec; 16(48):14404-11. doi:
10.1002/chem.201000602
. [PMID: 21038324] - J Wylie Nichols, R F Abercrombie. A view of hydrogen/hydroxide flux across lipid membranes.
The Journal of membrane biology.
2010 Sep; 237(1):21-30. doi:
10.1007/s00232-010-9303-0
. [PMID: 20871986] - Yusuke Iguchi, Masafumi Yamaguchi, Hiroyuki Sato, Kenji Kihira, Tomoko Nishimaki-Mogami, Mizuho Une. Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor.
Journal of lipid research.
2010 Jun; 51(6):1432-41. doi:
10.1194/jlr.m004051
. [PMID: 20023205] - Benjamin M Swarts, Zhongwu Guo. Synthesis of a glycosylphosphatidylinositol anchor bearing unsaturated lipid chains.
Journal of the American Chemical Society.
2010 May; 132(19):6648-50. doi:
10.1021/ja1009037
. [PMID: 20423078] - Wan-Joong Kim, Sanghee Kim, Bong Soo Lee, Ansoon Kim, Chil Seong Ah, Chul Huh, Gun Yong Sung, Wan Soo Yun. Enhanced protein immobilization efficiency on a TiO2 surface modified with a hydroxyl functional group.
Langmuir : the ACS journal of surfaces and colloids.
2009 Oct; 25(19):11692-7. doi:
10.1021/la901615e
. [PMID: 19788222] - Zhe An, Shan Lu, Jing He, Yan Wang. Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide.
Langmuir : the ACS journal of surfaces and colloids.
2009 Sep; 25(18):10704-10. doi:
10.1021/la901205c
. [PMID: 19689160] - Maria G Antoniou, Usha Nambiar, Dionysios D Dionysiou. Investigation of the photocatalytic degradation pathway of the urine metabolite, creatinine: the effect of pH.
Water research.
2009 Sep; 43(16):3956-63. doi:
10.1016/j.watres.2009.06.015
. [PMID: 19595423] - Mary J Beilby, Sabah Al Khazaaly. The role of H(+)/OH(-) channels in the salt stress response of Chara australis.
The Journal of membrane biology.
2009 Jul; 230(1):21-34. doi:
10.1007/s00232-009-9182-4
. [PMID: 19609825] - Hilal Türkoğlu Saşmazel, Sorin Manolache, Menemşe Gümüşderelioğlu. Water/O2-plasma-assisted treatment of PCL membranes for biosignal immobilization.
Journal of biomaterials science. Polymer edition.
2009; 20(7-8):1137-62. doi:
10.1163/156856209x444475
. [PMID: 19454174] - Kwang-Seuk Ko, Gisun Park, Yang Yu, Nicola L Pohl. Protecting-group-based colorimetric monitoring of fluorous-phase and solid-phase synthesis of oligoglucosamines.
Organic letters.
2008 Dec; 10(23):5381-4. doi:
10.1021/ol802229b
. [PMID: 18975959] - A Zand, N Walter, M Bahu, S Ketterer, M Sanders, Y Sikorski, R Cunningham, L Beholz. Preparation of hydroxylated polyethylene surfaces.
Journal of biomaterials science. Polymer edition.
2008; 19(4):467-77. doi:
10.1163/156856208783719509
. [PMID: 18318959] - Yi Han, Jing Zhang, Xiaoyue Chen, Zhaozhou Gao, Wei Xuan, Sheng Xu, Xiao Ding, Wenbiao Shen. Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa.
The New phytologist.
2008; 177(1):155-166. doi:
10.1111/j.1469-8137.2007.02251.x
. [PMID: 18028301] - Georges Kamgang-Youbi, Jean-Marie Herry, Marie-Noëlle Bellon-Fontaine, Jean-Louis Brisset, Avaly Doubla, Murielle Naïtali. Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei.
Applied and environmental microbiology.
2007 Aug; 73(15):4791-6. doi:
10.1128/aem.00120-07
. [PMID: 17557841] - V Brumas, H Miche, M Fiallo. Copper(II) interaction with 3,5-diisopropylsalicylic acid (Dips): new insights on its role as a potential *OH inactivating ligand.
Journal of inorganic biochemistry.
2007 Apr; 101(4):565-77. doi:
10.1016/j.jinorgbio.2006.11.017
. [PMID: 17234268] - Manassis G Mitrakas, Constantinos A Sikalidis, Theoktisti P Karamanli. Immobilization of EAFD heavy metals using acidic materials.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2007 Mar; 42(4):535-41. doi:
10.1080/10934520701189794
. [PMID: 17365324] - Roland Molinié, Renata A Kwiecień, Piotr Paneth, Wilfried Hatton, Jacques Lebreton, Richard J Robins. Investigation of the mechanism of nicotine demethylation in Nicotiana through 2H and 15N heavy isotope effects: implication of cytochrome P450 oxidase and hydroxyl ion transfer.
Archives of biochemistry and biophysics.
2007 Feb; 458(2):175-83. doi:
10.1016/j.abb.2006.12.013
. [PMID: 17254540] - Takashi Kakimoto, Naoyuki Funamizu. Factors affecting the degradation of amoxicillin in composting toilet.
Chemosphere.
2007 Feb; 66(11):2219-24. doi:
10.1016/j.chemosphere.2006.09.060
. [PMID: 17109929] - M Iu Zhitkov, G N Chechina, Iu A Vinnichenko, O E Rudenko, T V Kulazhenko, L E Serebriakov. [Comparative study of injuring action of the preparations used for chemical-mechanic removal of carious dentine].
Stomatologiia.
2007; 86(2):9-11. doi:
NULL
. [PMID: 17828061] - Sofia N Rodrigues, Inês C Gonçalves, M C L Martins, Mário A Barbosa, Buddy D Ratner. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers.
Biomaterials.
2006 Nov; 27(31):5357-67. doi:
10.1016/j.biomaterials.2006.06.010
. [PMID: 16842847] - Rebekah H Gensure, Mark L Zeidel, Warren G Hill. Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes.
The Biochemical journal.
2006 Sep; 398(3):485-95. doi:
10.1042/bj20051620
. [PMID: 16706750] - Dougal F Laird, Michael R Mucalo, Yoshiyuki Yokogawa. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis.
Journal of colloid and interface science.
2006 Mar; 295(2):348-63. doi:
10.1016/j.jcis.2005.09.013
. [PMID: 16229855] - Thad A Harroun, John Katsaras, Stephen R Wassall. Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane.
Biochemistry.
2006 Jan; 45(4):1227-33. doi:
10.1021/bi0520840
. [PMID: 16430218] - G D Prestwich, Y Xu, L Qian, J Gajewiak, G Jiang. New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.
Biochemical Society transactions.
2005 Dec; 33(Pt 6):1357-61. doi:
10.1042/bst0331357
. [PMID: 16246118] - Morten Ø Jensen, Ursula Röthlisberger, Carme Rovira. Hydroxide and proton migration in aquaporins.
Biophysical journal.
2005 Sep; 89(3):1744-59. doi:
10.1529/biophysj.104.058206
. [PMID: 15951380] - Deng-ming Sun, Hua-cai Fang. [Determination of trace manganese by non-organic solvents extraction catalytic spectrophotometry in Mn(II)-H2O2-EBT-PEG-2000 system].
Guang pu xue yu guang pu fen xi = Guang pu.
2005 Aug; 25(8):1315-7. doi:
"
. [PMID: 16329510] - Bernardo V Alvarez, Dawn M Kieller, Anita L Quon, Daniel Markovich, Joseph R Casey. Slc26a6: a cardiac chloride-hydroxyl exchanger and predominant chloride-bicarbonate exchanger of the mouse heart.
The Journal of physiology.
2004 Dec; 561(Pt 3):721-34. doi:
10.1113/jphysiol.2004.077339
. [PMID: 15498800] - Ludmila Krivánková, Michaela Brezková, Petr Gebauer, Petr Bocek. Importance of the counterion in optimization of a borate electrolyte system for analyses of anions in samples with complex matrices performed by capillary zone electrophoresis.
Electrophoresis.
2004 Oct; 25(20):3406-15. doi:
10.1002/elps.200406097
. [PMID: 15490446] - L Hao, J Lawrence, K S Chian, D K Y Low, G C Lim, H Y Zheng. The formation of a hydroxyl bond and the effects thereof on bone-like apatite formation on a magnesia partially stabilized zirconia (MgO-PSZ) bioceramic following CO2 laser irradiation.
Journal of materials science. Materials in medicine.
2004 Sep; 15(9):967-75. doi:
10.1023/b:jmsm.0000042682.20595.74
. [PMID: 15448404] - David T Moore, Jos Oomens, Lex van der Meer, Gert von Helden, Gerard Meijer, Jose Valle, Alan G Marshall, John R Eyler. Probing the vibrations of shared, OH+O-bound protons in the gas phase.
Chemphyschem : a European journal of chemical physics and physical chemistry.
2004 May; 5(5):740-3. doi:
10.1002/cphc.200400062
. [PMID: 15179731] - Artur Giełdoń, Rajmund Kaźmierkiewicz, Rafał Slusarz, Marta Pasenkiewicz-Gierula, Jerzy Ciarkowski. Molecular dynamics study of 4-OH-phenylacetyl- D-Y(Me)FQNRPR-NH2 selectivity to V1a receptor.
Journal of molecular modeling.
2003 Dec; 9(6):372-8. doi:
10.1007/s00894-003-0142-0
. [PMID: 14530927]